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Chapter 4: Non-Manifold Surfaces

Creative imagination is still of first importance

to the design engineer, and it should be fully developed.

Here, Nature is the great master teacher.

(Heinrich Hertel)

4.1 Introduction

As described in section 3.5.4, implicit surfaces are two-dimensional manifolds.

That is, they envelope a volume.  A manifold surface is, everywhere, locally

homomorphic (that is, of comparable structure) to a two-dimensional disk

(manifold surfaces with boundary are everywhere homomorphic to a disk or a half-

disk).  For example, a disk may be fully applied to any portion of the torus below,

left.  But, the disk does not fully apply to all points of a teapot, below, right.  In

particular, the disk is truncated along the upper boundary of the teapot bowl.

Figure 4.1 Manifold and Manifold-with-Boundary Surfaces

Any tessellation (for example, a polygonization) of a manifold surface will produce

edges that are of degree two; that is, all edges are shared by exactly two faces.

Tessellations of non-manifold surfaces produce edges of degree 1, 2, 3, or more.  A

polygonized, bounded implicit surface has edges of degree two, whereas many

parametric surfaces, such as patches, have boundary edges of degree one.  In the

case of parametric surfaces, it requires explicit effort by the designer to define a

closed surface, that is, a surface without boundary.  The availability of boundary
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edges is an obvious design asset; with it, the designer may construct objects with

openings or flat projections.  Representations for edges of degree three or greater

exist [Weiler 1986], but are not commonly employed in geometric modeling.

The manifold surface is appropriate for many natural forms; for example, the

integument of an animal usually encloses a volume.  But certain natural objects,

such as hair, feathers, or leaves, are not representable as a volume.  For example,

we may reasonably consider the leaf to be a combination of volume (the veins) and

surface (the leaf blade), as depicted below.  Such combinations pose a dilemma as

to their geometric representation.

blade

vein

Figure 4.2 A Natural Form Consisting of a Volume and a Surface

As shown in the following illustration, the embedding of vein within blade can be

represented as surface only (far left), surface and volume (left), thin volume

(right), and volume and trimmed surface (far right).  Clearly, the first

representation is the least faithful to the intended surface.  The second

representation is not compact and, for images involving translucent surfaces, will

not produce the desired result.

surface
only volume trimmed  surface

volume  andsurface  and thin
volume

Figure 4.3 Possible Combinations of Vein and Blade
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The third representation offers considerable difficulty for the sampling process.

Let us consider this issue applied to a simpler geometry.  For the remainder of this

section, we employ a sphere embedded in a square, rather than a vein embedded

in a blade.  The sampling rates for a ray-tracer and a polygonizer are compared

below for a thin-volume representation and a surface-only representation.  A high

sampling rate is required to ray-trace or polygonize a thin volume, resulting in an

inordinate number of polygons.

Figure 4.4 Polygonization and Ray-Tracing Sampling Rates

top: coarse sampling is sufficient for surfaces

bottom: fine sampling is required for thin volumes

Therefore, we regard the ‘volume and trimmed surface’ representation, which

contains edges of degrees one, two, and three, as the only accurate, compact, and

unified representation in figure 4.3.1  Although the joins of parametric surfaces

[Farin 1988] and the blends of implicit volumes [Rockwood 1989] have received

careful study, the representation of a combined surface and volume has received

relatively little attention.  In this chapter, we consider the extension of our skeletal

design representation, which consists of skeletal elements, skeletal primitives, and

an implicit surface, to include the combination of surface and volume.

An essential aspect of such a combination is the trimming away of those parts of

the surface contained within the volume.  Trimming one surface against another or

against a volume appears difficult when the surface or volume is compactly

expressed in parametric or implicit form [Crocker and Reinke 1987], [Patrikalakis

1993]  Alternatively, the surface and volume can first be converted to a concrete
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representation, such as polygons.  Even so, the task of trimming an arbitrarily large

set of polygons against another arbitrarily large set is computationally challenging.

We can reduce the computational burden by spatially partitioning the object.

Within each cell, the surface can be approximated by a polygon trimmed against

the volume, and the boundary of the volume can be approximated by another

polygon.  In order that a) a single, unified object results, and b) no gap exists

between the surface polygon and the volume polygon, the volume polygon is

divided at the trimmed surface, as shown below.

polygon 1

polygon 2polygon

volume

surface

volume

surface

gap

Figure 4.5  Combination of Surface and Volume (side views)

left: surface clipped to cell and volume approximated by polygon

right: gap eliminated by dividing volume polygon

This process may be codified as a set of operations applicable to particular cells.  In

the example illustration below, there are five cell types:

Cell 1 contains neither surface nor volume, and no operation is performed.

Cell 2 contains the surface but no detectable volume.  Therefore, that piece

of the surface contained within cell 2 is approximated by a single polygon.

Cell 3 contains surface and volume.  The surface is trimmed to this cell and

connected to the polygons that approximate the volume boundary.
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Cell 4 also contains surface and volume, but the surface is fully enveloped by

the volume.  Thus, polygons approximating the volume boundary are

produced but the surface piece is not.

Cell 5 contains only volume.  Thus, polygons approximating the volume

boundary are produced.

volume
cell 1

cell 2 cell 4

cell 5

surface
cell 3

Figure 4.6 Partitioning of Surface and Volume

left: overall geometry, right: different cell types

A spatial partitioning scheme such as this could be employed to produce a

concrete representation of a non-manifold surface.  We prefer, however, a method

within the framework of conventional polygonization, described in the previous

chapter.  Additionally, we prefer a method of surface definition similar to those

based on the skeleton.  That is, we seek to broaden the scope of implicit surface

modeling.

4.2 Binary and Multiple Regions of Space

As described in section 3.1, an implicit surface separates regions of space for which

f(p) < 0 from regions for which f(p) > 0.  This binary regionalization of space

provides a definition for the ‘volume only’ shape in figure 4.3, as shown below.  It

can also define the ‘surface only’ and ‘surface and volume’ shapes, if we ignore the

unbounded aspect of the horizontal surface.  The preferred shape, the ‘volume and
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trimmed surface,’ cannot be defined by a binary regionalization of space, which

demonstrates two restrictions associated with binary regionalization.  First, it is not

possible to combine differently dimensioned, bounded objects.  Second, it is not

possible to bound a two-dimensional object.

< 0
< 0> 0 > 0
> 0 < 0

< 0
> 0

surface  only surface  and  volumevolume  only

Figure 4.7 Possible Implicit Definitions (side view)

Conventional polygonizers require binary regions of space for their operation

because they assume a) that f is continuous and, b) that points on opposite sides of

the surface have oppositely signed values.  Conventional polygonizers approximate

an implicit surface by tessellation.  Thus, they produce, for a bounded object, a

manifold surface.  The conventional polygonizer will not produce an edge with

only one face, that is, a boundary edge.  Nor will it produce an edge with three or

more faces, that is, an intersection edge.  In contrast, any tessellation of a volume

embedded in a surface, such as the sphere-square shown below, is non-manifold

and requires edges of degree one, two and three.

intersection  edges

boundary  edges

Figure 4.8 Tessellation of a Non-Manifold

sphere/square intersection edges have degree three

square boundary edges have degree one
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In this chapter we describe a new method for defining and polygonizing non-

manifold implicit surfaces.  The method differs from conventional polygonization

in that it permits multiple, rather than binary, regions of space.2  For example, the

sphere-square can be defined by four regions, as shown below.

1 2
3

4

side view

Figure 4.9 Multiple Regions define the Sphere-Square

Here, a cube bounds the plane, creating the square.  The cube itself is not of

interest; we wish to produce only those surfaces of interest that separate regions 1

from 3, 1 from 4, and 3 from 4.  Accordingly, our non-manifold implicit surface

definition consists of two parts: a) an integer-valued region function, freg, that

returns the region value of a point, and b) a set of region-pairs of interest.  For the

example above, the region pairs are {(1, 3), (1, 4), (3, 4)}, and freg(p) is:

1,  ||p|| < r

2,  max (||px||, ||py||, ||pz||) > s

3,  pz > 0

4,  otherwise,

where r is the radius of the sphere and s is half the length of the square’s side.

The use of multiple regions is conceptually simple, and may be implemented

following the fundamental steps of conventional polygonization.  There are,

however, significant differences that complicate the implementation of non-

manifold polygonization.  Before examining these issues, we consider related work.
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4.3 Non-Manifold Representations in Solid Modeling

The literature offers little on the subject of non-manifold surfaces and mixed

dimensional modeling.  Prior work appears as sculptured surface extensions to

boundary representation solid modelers [Miller 1986].  The extension to non-

manifolds relaxes the requirement that constructive primitives be solid.

[Rossignac and O’Connor 1989] and [Paoluzzi et al. 1993] discuss the use of a

simplicial complex to represent objects defined in differently dimensioned spaces.

These works develop a calculus that permits the application of the standard

boolean operations upon the simplicial complexes.  At any time, the complexes

may be reduced to a boundary representation.

In [Muuss and Butler 1990], operations on non-manifold CSG representations are

specifically developed for the purpose of surface tessellation.  As with the other

CSG approaches, a boundary representation is constructed according to binary

evaluations described by a CSG tree.  There is, apparently, the additional

requirement that the topology of the resulting surface be pre-established.

As observed in section 3.2, the pairwise construction of intermediate CSG

structures requires attention to numerical accuracy and significant case analysis of

edge/edge and edge/surface intersections.  These requirements also apply to non-

manifold surfaces in CSG.  The complexes developed in [Rossignac and O’Connor

1989] and [Paoluzzi et al. 1993] are intended to support this constructive process.

Absent from [Rossignac and O’Connor 1989] and [Muuss and Butler 1990] are

concrete examples.  The examples given in [Paoluzzi et al. 1993] are limited in

scope.  In this chapter we provide a number of non-manifold definitions and their

polygonal approximations.

4.4 Comparison with Conventional Polygonization

As described in section 3.5.1, conventional polygonizers of continuous functions
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partition space by continuation.  The propagation from one cell to the next is

controlled by examining the function polarity at each cell corner; a new cell is

formed across any face that contains corners of differing polarity.  For the non-

manifold polygonizer, however, cells are propagated across only those faces that

contain a surface of interest, as defined in section 4.2.

The indexing schemes for cubes and cube edges described in section 3.5.3 are also

employed in our implementation of a non-manifold polygonizer.  Unlike the

conventional polygonizer described, we require the decomposition of each cube

into tetrahedra.  As we soon demonstrate, non-manifold polygonization of an

individual cell is considerably more complex than for conventional polygonization.

The tetrahedron is the basic three-dimensional polyhedron (i.e., it is a simplex)

and its use significantly simplifies the implementation of non-manifold

polygonization.

Conventional polygonizers reasonably assume that a surface passes through a

polygonizing cell at most once.  Thus, only a single vertex occurs along a cell edge

that connects differently signed cell corners.  This results in zero, three, or four

edge vertices within a tetrahedron, as shown in figure 3.7.  Also, at most a single

polygon edge, or face line, is formed across a tetrahedral face.  Traversing from one

face line to the next, around the cell, produces a single three or four-sided polygon.

The non-manifold polygonizer described in this chapter performs the conventional

steps of edge vertex computation, face line formation, and polygon creation, but

also accommodates face vertices, multiple edge vertices, and multiple face lines.

4.4.1 Face Vertices

As a consequence of multiple regions of space, more than two regions can occur

within a tetrahedral face.  This yields more than two edge intersections on the face

as well as an intersection internal to the face.  For example, consider the three

regions of space that meet along the circular intersection of sphere and square,
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figure 4.9.  In the illustration below, left, all three regions are spanned by a single

tetrahedron; indeed, all three regions are spanned by a single tetrahedral face, as

shown below, middle.  This suggests the computation of three edge vertices and a

face vertex, and their connection by three face lines, as shown below, right. 

1

3

1
3

4

Figure 4.10 Need for Face Vertex

The use of a face vertex introduces significant implementation complications.

Therefore, we briefly consider alternative face lines, shown below, that do not

require a face vertex.  The left method is topologically inconsistent because it

leaves an undefined region within the face.  The middle approach, in effect, moves

the face intersection and two of the edge intersections to a cell corner, yielding a

single line within the face.  At right, the face intersection is moved to one of the

edge vertices.  The latter two methods produce, essentially, an inaccurate

approximation to the face vertex.

?

Figure 4.11 Alternatives to the Face Vertex

Accuracy of the face intersection is, however, essential if intersections and

boundaries within an object are to be free of undesirable visual artifacts.  To

achieve this accuracy, the latter two methods above would require relatively small
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tetrahedra.  This can be accomplished by uniformly small tetrahedra, which would

produce an excessive number of polygons, or by adaptive subdivision, which is

difficult to implement.  Therefore, we support a face vertex.

4.4.2 Multiple Edge Vertices

Three regions can intersect a cell face other than as shown in figure 4.10.  Two

common possibilities, shown below, left, suggest the need for multiple edge

vertices along a cell edge, as shown below, right.  In both examples, multiple edge

intersections occur along an edge connecting equi-valued corners.  Thus, unlike

conventional polygonizers, our implementation must inspect all edges, not simply

those that connect differently valued corners.

1

2

3

1

2

3

Figure 4.12 Need for Multiple Vertices along an Edge 

4.4.3 Disjoint Lines and Surfaces

Let us consider the face shown above, left, its containing tetrahedron, and an

adjoining tetrahedron.  The face is repeated below, left, and the two tetrahedra are

shown below, middle, separated for clarity.  The front face of the adjoining

tetrahedron is shown at right.  The arrangement of polygons produced from these

tetrahedra is significantly more complex than the single polygon produced by

conventional polygonizers.  In particular, the left tetrahedron contains a 3, a 4, and

a 5-sided polygon, all sharing a common edge.  The right tetrahedron contains

disjoint surfaces.  Consequently, a single face must accommodate multiple disjoint

lines, each of which connects an edge vertex separating a pair of regions to another

edge vertex separating the same pair of regions.  This arrangement of face and

edge vertices can occur regardless of cell size.
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-

Figure 4.13 Disjoint Lines and Surfaces

adjoining tetrahedra and their front faces

Our implementation accommodates any number of disjoint lines within a face,

provided there is no face intersection.

4.4.4 Complex Face Topologies

A sufficiently complex object can require an arbitrary number of face and edge

vertices within a single polygonizing cell.  For example, a face might contain any

arrangement shown below, regardless of cell size.  These complex face topologies

are distinguished by multiple face intersections or by disconnected components, at

least one of which contains a face intersection.  A robust polygonizer should

handle these cases.  We have, however, restricted our implementation to one face

vertex per face or a collection of disconnected components, none of which contains

a face intersection.  Despite these simplifications, our implementation produces

satisfactory results for the examples presented in section 4.8.

Figure 4.14 Complex Face Topologies

4.4.5 Intersection Curves

If each region of space is closed, then a surface separating two regions is the

intersection of the two.  Similarly, a one-dimensional curve is the intersection of
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three or more regions of space.  For example, referring to figure 4.9, the circle in

the sphere-square is the intersection of regions 1, 3, and 4, and the boundary of the

square is the intersection of regions 2, 3, and 4.

These curves intersect the polygonizing cell at a cell face, and are readily

approximated simply by connecting face vertices.  Thus, the non-manifold

polygonizer can approximate intersection curves of two or more surfaces.  This

approach enforces a singular point of intersection (below, middle), whereas

surface/surface intersection methods prone to numerical instability can yield non-

intersecting curves (below, right).

Figure 4.15 Intersection Curves

left: circular intersection of sphere and plane passes through tetrahedral face

middle: polygonization is guaranteed to approximate curve/curve intersection

right: curve following may not find curve/curve intersection 

4.5 Implementation

In this section we present details for cell propagation, cell polygonization, and post

processes that modify the set of vertices generated by the polygonizer.

Throughout, we intend that the polygonizer produce vertices whose locations are

independent of the region-pairs of interest to the client.  That is, if the client

interest changes, the location of remaining vertices should not.  Pseudo-code

detailing these algorithms is presented in [Bloomenthal and Ferguson 1994].

4.5.1 Cell Propagation and Decomposition

Propagation is the process whereby the polygonizer generates a set of cells that
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enclose the surface.  As with conventional polygonizers that utilize continuation,

we begin with a start point, usually supplied by the client.  With conventional

polygonization, a cell propagates to other cells across faces that contain both

positively and negatively valued corners.  With the non-manifold polygonizer,

however, a face must contain a polygon of interest to the client.  This prevents

unwanted propagation along uninteresting surfaces, such as the cube in the sphere-

square example.

Although the cube is a convenient propagating cell, we prefer the tetrahedron as a

polygonizing cell because it simplifies the task of locating face vertices and disjoint

surfaces.  Therefore, as with some conventional polygonizers, the non-manifold

polygonizer decomposes each cube into five tetrahedra, as shown below.  The five-

decomposition must alternate its orientation from one cube to a neighboring cube

so that faces of neighboring tetrahedra coincide (a six-decomposition of the cube,

shown in figure 3.6, does not require alternating orientations).

ltn

rbn

rbf

lbn

lbf

rtf

rtnltf

rtf rtf

rtf

rtf
rtn

rbn
rbn

rbn
rbf

rbn

lbn

ltf

ltn ltnltn
ltn

lbf
lbf

lbf

lbf

Figure 4.16 The Five-Decomposition of a Cube

l, r, t, b, n, f mean, respectively, left, right, top, bottom, near, far

4.5.2 Cell Polygonization

Given an individual tetrahedron, polygonization creates those polygons that

approximate the surfaces within the tetrahedron.  This process consists of a)

checking each tetrahedral edge for edge vertices, b) checking each face for a face
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vertex, c) calculating any necessary internal vertex, and d) producing the polygons.

4.5.2.1 Edge Vertex Calculation and Storage

As discussed in section 4.4.2, we place an edge vertex at all edge intersections along

a cell edge; also, with each edge vertex we associate the region-pair that it

separates.  The binary subdivision frequently used in conventional polygonizers

does not work well here, as in the first subdivision step one half of the edge is

ignored and intervening intersections missed, as shown below.

found missed

edge
endpoint

edge
endpoint2 3 2

intersection intersections

surfaces

1st sample
2nd sample

3rd sample

Figure 4.17 Sampled Points by Binary Subdivision

Therefore, we first divide the edge into several equally sized sections and then

apply binary subdivision to each section whose endpoints have different region

values.  If, during this binary subdivision, a ‘foreign’ region value is encountered

(i.e., a region value not equal to either of the section endpoint region values), then

the subdivision continues recursively in both halves, detecting two (or more)

intersections in the given section.  Surface vertices are then placed at the midpoint

of each final interval.  To guard against a very narrow region crossing a final

interval, we test that the region value at the interval midpoint is one of the two

endpoint region values of the interval; if not, the subdivision is continued.  We

choose n, the number of initial sections, and m, the minimum number of

subdivision steps, such that each vertex will be within ε of an actual intersection,

i.e., such that edgeLength/(2(m+1)n) ≤ ε.
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endpoint

edge
endpoint

section
endpoint

edge
endpoint

1st 2nd3rda section
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Figure 4.18 Two-Stage Edge Division for a Non-Manifold Polygonizer

left to right: initial division of edge into sections, binary subdivision

within one section, vertex placed at middle of final interval

We utilize a hash table, as described in section 3.5.2, to associate surface vertices

with tetrahedral edges.  As we explain later, it is important to order the edge

vertices during their storage; we use the location of the edge end-points to

compute an edge direction, and the vertices are ordered accordingly.  The region-

pair for each vertex is also ordered according to this edge direction.

We store all edge vertices, whether or not they belong to a surface of interest.  This

allows subsequent parts of the polygonizer to produce geometry that is

independent of client interest.  Storing all edge vertices also permits computation

of the region-set for a face vertex, as described below.

4.5.2.2 Looped Edge Intersections

A face contour is ‘looped’ if it enters and exits a face along the same edge, as

shown below, left.  This example results in two adjacent looped edge intersections,

on the same edge, having the same but oppositely ordered region-pairs (e.g., (1,2)

and (2,1)).  As shown below, right, looped intersections may occur on edges of

equal or differently valued corners, and may be nested.

1

2

3

1
2

3

1

2
a loop

looped
intersections

Figure 4.19 Loop Examples
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Looped intersections are problematic because there is no face intersection with

which they can connect.  We briefly consider these options for a pair of looped

intersections: a) they may be joined by a face line, b) they may be connected to a

point on the face contour, preferably one that is maximally distant from the edge,

or c) they may be ignored.  The first option is undesirable because the face line

would lie along the cell edge; this can produce duplicated polygons or polygons

that align with tetrahedral edges or faces, resulting in a staircased tessellation.  The

second option is an implementation complication we preferred to avoid.

Therefore, we ignore looped intersections, effectively truncating the surface, as

illustrated below.  Conventional polygonizers also truncate loops if they occur

between equi-valued cell corners.  As shown, truncation can be arbitrarily large.  If

significant, these errors are best remedied with a smaller cell size.  We regard face

vertex accuracy (section 4.4.1) as more important than accommodating loops

because the occurrence of non-manifold edges is more likely (within a non-

manifold context) than the occurrence of elongated protuberances.

Figure 4.20 Truncation of Large Loop

4.5.2.3 Face Vertex Calculation

Our implementation permits a single face intersection per face.  Because face

vertices indicate the intersection of three or more regions, the limitation of one

face vertex per face requires the designer to separate region intersections by the

size of the polygonizing tetrahedron.

As with edge vertices, face vertices are shared between adjoining tetrahedra.

Therefore, we first test if a face has been previously processed.  If not, we then
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determine if it contains an intersection; a face contains at least one intersection if

at least one of its face lines is not disjoint.  To determine if a face contains only

disjoint lines, and no face intersection, we traverse its edge vertices in order,

adding and removing vertex region-value pairs from a stack.  If there are only

disjoint lines in the face, then, beginning with a vertex startV, the stack will

become empty when the partner of startV is reached, then begin to fill again, and

will empty a second time upon the return to startV.

1
2
3

4 5

startV
(stack empty)

(stack empty)
partner (startV, f)

Figure 4.21 Determining if a Face Contains only Disjoint Lines

If an intersection exists, a face vertex is created and stored.  Because it is

computationally expensive to locate the position of a face intersection, we set its

location only if it represents an intersection with a surface of interest.

To compute a face intersection, we follow the face contour beginning at an edge

vertex v and continue until we find a foreign region (i.e., a region other than the

two separated by v).  This is similar to other local methods [Bajaj et al. 1988],

[Mortensen 1985].  As shown below, the face contour is surrounded by small

triangles until a region other than 1 or 2 (in this example) is encountered.  The face

vertex location is then set to the center of the final triangle.

v
1

23

Figure 4.22 Following a Face Contour

(the small triangles are enlarged for illustration)
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For simple face topologies, such as above, the choice of start vertex is immaterial.

For complex topologies, some vertices, such as v1 and v2 below, do not yield a face

intersection.  The contour follower must recognize this, and begin again at another

edge vertex.  Also, some vertices, such as v3 and v4, yield different intersections;

therefore we begin searches first from edge vertices separating regions of interest.

This compromises our goal of a geometry independent of client interest, but is

reasonable given our limitation of a single face vertex.

v1

v2
v3

v4v5

v6

v7
v8

1
2

3
4

5 6

Figure 4.23 A Complex Face Topology

The small triangles enclosing the face contour are each defined by a directed edge

crossing the contour, as shown below; an initial directed edge spans the start

vertex.  Each directed edge implies a new triangle apex, whose region value

determines which triangle side becomes the next directed edge.  The final triangle

is one whose apex belongs to a foreign region; the center of this triangle is used as

the face vertex location.  To ensure this is within ε of the actual intersection, the

triangle side length must not exceed (2√3)ε, assuming the actual intersection is

contained within the final triangle.  A recursive contour follower that contains the

contour within increasingly smaller triangles may be more efficient and accurate.

1
2

3

4

5 foreign
region

encountered

directed
edge

apex

p1 p2

Figure 4.24 Face Contour Following using Directed Edges
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4.5.2.4 Polygon Formation and Internal Vertices

When no face vertices are needed for regions of interest, those edge vertices

needed for regions of interest are connected to form one or more disjoint polygons,

as shown below, left.  All such polygons will have 3 or 4 sides (this claim is

established in [Bloomenthal and Ferguson 1994]).

Polygon formation begins with an edge vertex separating regions of interest and a

tetrahedral face containing the vertex.  This first vertex is stored as a member of

the polygon.  We now proceed to the partner of this vertex, with respect to the

given face (see figure 4.21).  The ‘current’ vertex becomes the partner, and the

‘current’ face becomes the face on the other side of the edge containing the new

current vertex.  This process, similar to ones described in [Bloomenthal 1988] and

[Wyvill and Jevans 1993], is iterated until the current vertex arrives at the start

vertex.  An optimized procedure could separately process common cases, such as

those typical of conventional polygonization (see section 3.5.3).

So that the client can associate one side of a polygon with a particular region value

(in order, for example, to determine polygon color or whether the polygon is front-

facing), the polygons must be constructed with a consistent orientation.  We order

each polygon so that, when viewed from the lesser of the two regions it separates,

its vertices appear in counter-clockwise order.

edge  intersection

face  intersection

internal  vertex

Figure 4.25 Polygon Formation

 left: disjoint, right: non-disjoint
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In the case of non-disjoint surfaces, there must be at least two face vertices that

separate regions of interest (this claim is substantiated in [Bloomenthal and

Ferguson 1994].  We create a vertex internal to the tetrahedron whose location is

the average location of those face vertices that separate regions of interest.  Our

implementation is restricted to a single internal vertex.  Each face line, together

with this internal vertex, creates one triangle, as shown above, right.  Each triangle

is ordered counter-clockwise when viewed from the lesser-valued of the two

regions it separates.  The triangles produced are all adjoining.

Triangles are returned to the client of the polygonizer via a ‘callback’ procedure.

Arguments to the procedure include a pointer to the (ever-growing) array of

vertices, three integers that index the vertex array and represent the current

triangle, and a pair of integers that represents the region-pair separated by the

current triangle.

4.5.3 Post Processes

There are two minor but significant problems whose remedy we postpone until all

cells have been polygonized.  These are the problem of undesirable triangles,

which can occur in conventional polygonization, and the need for duplicated

vertices, which is specific to non-manifold polygonization.

4.5.3.1 Thin or Small Triangles

Conventional polygonizers produce thin triangles (i.e., triangles with appreciable

height but minimal width) if an edge of the polygonizing cell is nearly tangential to

the implicit surface.  Polygonizers also produce small triangles (i.e., triangles with

minimal height and width) if a corner of the polygonizing cell is close to the

surface.  These cases occur with the non-manifold polygonizer as well;

additionally, thin or small triangles can occur when an internal vertex is close to a

face vertex, or when a face vertex is close to an edge vertex.
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Such triangles can cause visualization artifacts.  They are also prone to large

orientation errors, (i.e., the normal of the triangle can vary significantly from the

actual surface normal) if the length of the shortest edge of the triangle is

comparable to, or less than, ε, the accuracy to which edge and face intersections

are computed.

We explored the possibility of eliminating, during polygonization, those vertices

located within close-factor × ε of another vertex (close-factor is defaulted to 1 or

provided by the client).  This allowed a complex cascade of identification (e.g., an

internal vertex could be moved onto a face vertex, a face vertex could be moved

onto an edge vertex, and an edge vertex could be moved onto a cell corner).  An

alternate approach suggested in [Moore and Warren 1991] perturbs cell corners so

that thin or small triangles do not result.

To simplify our implementation, we chose to separate the process of removing thin

or small triangles from the process of polygonization.  Thus, we include a post

processing stage in which each pair of close vertices, connected by a triangle edge,

is replaced by the average of the two vertices.  Also, any triangle vertex close to the

opposite triangle edge is replaced by the midpoint of the edge.  Any degenerate

triangles that result are removed.  The vertex modifications are illustrated below.

Figure 4.26 Small and Thin Triangles

4.5.3.2 Duplicated Vertices

Consider three triangles, t1, t2, and t3, that share an edge along the intersection

circle of the sphere-square, as shown below, left.  For smooth shading, each vertex
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requires a surface normal, but, in this example, it is not possible to compute a

single normal for v, a vertex shared by all three triangles.  This is because, as shown

below, right, t1 and t2 require a right-facing normal, whereas t3 requires an

upward-facing normal.  To accommodate these competing requirements, we

produce coincident vertices located at v, (and vv) one for each different region-pair

of the polygons that share v.  Consequently, each vertex located at v may have an

independent surface normal, color, and any other property associated with the

surface that separates the region-pair of the vertex.

t1

t2 t3

v
t3

t2

t1

N

v

v

v

N

N
vv

vv

vv
vv

Figure 4.27 Need for Duplicated Vertices

4.6 Calculation of Surface Normals

Although a surface normal for a vertex can be approximated by the averaged

normals of its surrounding polygons, conventional polygonizers usually provide a

more accurate calculation by approximating the gradient, ∇f, as discussed in

section 3.5.3.  Our region function, freg, is, however, integer valued and cannot

yield a gradient.  Thus, in addition to freg, we allow the client to provide a real-

valued function g from which the gradient can be calculated by the polygonizer.

As discussed in section 4.5.3.2, a vertex normal depends not only on its location

but also on the region-pair it separates.  Therefore, g requires a point in space and

a region-pair.  For a fixed region-pair, g should be a continuous function in the

neighborhood of the surface separating that region-pair.  As demonstrated in

section 4.8.1, g usually can be defined in terms of those functions that underlie freg. 
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4.7 Performance

We first compare the performance of our polygonizer with that of a conventional

polygonizer; we then present several polygonized, non-manifold objects.

For non-trivial objects, both conventional and non-manifold polygonizers devote

the majority of their time to evaluation of the implicit surface function (f or freg).

Thus, we compare the two polygonizers according to number of their function

evaluations.  The non-manifold polygonizer performs many more evaluations

along a surface border, where it must locate a face intersection.  Because a

conventional polygonizer does not attempt to locate such intersection, we compare

the frequency of evaluations for solid models only.  This limits our consideration

to the typical cases of three and four edge intersections per tetrahedron.

We assume the non-manifold polygonizer uses n (the number of sections on an

edge, see section 4.5.2.1) = 16 and m (the number of steps in the binary

subdivision) = 4, and that the conventional polygonizer uses m = 8, so that their

surface vertex accuracies are equal.  We ignore function evaluations for corners of

the tetrahedra. which should be the same for both polygonizers.  For three edge

intersections, the conventional polygonizer requires (3×8) = 24 evaluations of f,

whereas the non-manifold polygonizer requires 3×16+3(16+4) = 108

evaluations of freg.  For the four edge intersections case, the conventional

polygonizer requires (4×8) = 32 evaluations, and the non-manifold polygonizer

requires 2×16+4(16+4) = 112 evaluations.  So, as a rough estimate, the non-

manifold polygonizer requires four times as many function evaluations as does the

conventional polygonizer.

4.8 Examples

For each example given in this section, the designer provided the following

parameters and callback functions, although some were defaulted.  The symbol Z

indicates the set of integers.
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Region (p ∈ ℜ3) returns regionValue ∈ Z 

This is freg, which returns a single value for a given point p (despite our

description in section 4.4.5 of a surface as an intersection, implying that p can

belong to two regions).

Interest (region-pair ∈ (Z, Z)) returns Boolean

This determines whether a client is interested in a particular surface; it could

also return miscellaneous polygon properties, such as color.

Gradient (region-pair ∈ (Z, Z), p ∈ ℜ3) returns ℜ

This procedure is required to assign an accurate normal to a surface vertex.

propagating cell size:  ℜ

The client provides a size small enough to obtain an acceptable level of detail

yet large enough to avoid an excessive number of polygons.

start point:  ℜ3

The distance from startpoint to the surface should be less than one-half the

size of the propagating cell.  If not provided, the polygonizer can perform a

random search for a start point.

ε:  ℜ

This is the accuracy to which edge and face intersections are located; we

have found 1/256 of the propagating cell size to be acceptable.

close-factor:  ℜ

When collapsing thin or small triangles, two vertices are considered close if

they are within close-factor × ε.  We have used a close-factor of 1.



85

4.8.1 A Saucer and a Square

This first example is topologically equivalent to the sphere-square discussed in

section 4.2.  To produce a more interesting object, however, the sphere function

was scaled by distance to the plane, producing a saucer-shaped blend to the plane.

For this example, we provide pseudo-code for the region value, freg, surface

interest, and the gradient.

2

3

0

1

Figure 4.28 Saucer Shape

left: cross-section of regions

right: rendered with transparency

Sigmoid (d) {

     (a blend function from [Wyvill et al. 1986])

     if abs (d) > 1

            then return 0

            else return 1−(4d6−17d4+22d2)/9

    }

Saucer (p) { return .35 Sigmoid (1.4√px
2+py

2) }
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Region (p) {

    if not InsideCube (p) then return 0

    if Saucer (p) > abs (pz) then return 1

    if pz > 0 then return 2 else return 3

    }

Interest (region-pair) {

    switch region-pair

(1, 2) => return (true, red)

(1, 3) => return (true, blue)

(2, 3) => return (true, green)

return (false)

    }

Gradient (p, region-pair) {

    switch region-pair

(1, 2) => return −pz−Saucer (p)

(1, 3) => return pz−Saucer (p)

(2, 3) => return −pz

    }

4.8.2 Sphere with Hole

This simple example defines a sphere with a disk removed, as shown below.  The

simple Boolean set operation 2−1 (2 being the large sphere and 1 being the small

sphere) produces a solid sphere with a ‘scoop’ removed.  This is easily reproduced

by our polygonizer by adding (1, 2) to the surface interest list, but this is not our

desired surface.  In particular, the sphere-hole has less surface area than the large

sphere.  The CSG surface will have an increased area (because the smaller sphere

has higher curvature than the large sphere).  CSG, a solid modeling system, cannot

reproduce the sphere-hole surface.
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Although this surface is easily constructed with parametric techniques, a simple

extension, given in the next section, would be substantially more difficult to

accommodate parametrically.

Region  (p)

      if p inside small sphere then 1

      if p inside large sphere then 2

      else 0

1 2

0

Figure 4.29 Sphere/Hole

left: region definition, right: surface (0, 2) (grey inside, red outside)

4.8.3 Sphere and Plane with Hole

This example combines the ideas of the previous two examples; it consists of a

sphere and a square with a sphere removed in the vicinity of their intersection.

Here we indicate interest in some intersection curves, which can be seen as thin

lines (blue, yellow, cyan, and magenta) in the polygonized results below.

Figure 4.30 Definition for Sphere/Plane/Hole
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Figure 4.31 Surfaces and Intersection Curves for Sphere/Plane/Hole

4.8.4 Blend to a Patch

A variation on the saucer is a blend between sphere and bicubic (tensor product)

patch.  The definition utilizes distance from p to the nearest point n on patch P,

with n = P (s, t).  An initial s and t are determined from an approximating triangle

mesh (discussed in section 7.2) and are refined by projecting the vector from n to p

onto the tangent plane at n, as shown below.  For this example, the mesh contained

98 triangles, and few iterations were required for ∆s and ∆t to fall below .001.

p

n
n’

(∆s, ∆t)

Figure 4.32 Determining a New s and t 
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The region definition for the Sphere/Patch given by:

      if Beyond (p, patch) then return 0

      if Sigmoid (p) > abs (DistanceToPatch (p, patch)) then return 1

      if DistanceToPatch (point, patch) > 0 then return 2 else return 3,

where DistanceToPatch is signed distance from n to p, and p is considered beyond

the patch if either s or t were less than .001 or greater than .999.  This definition is

illustrated below, followed by surface results.

0

1
2

3

Figure 4.33 Region Definition for Sphere/Patch 

Figure 4.34 Line Drawings
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Figure 4.35 Shaded Images (with transparency)
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4.9 Conclusions

In this chapter a new, simple, and effective method was presented to express and

polygonize non-manifold implicit surfaces.  Although the current implementation

has limitations, it expands the range of surfaces normally employed in computer

graphics.  For example, it permits a simple expression and evaluation for

parametric surfaces combined with and trimmed against implicit volumes.  These

non-manifold implicit surfaces are defined by multiple regions of space, unlike the

binary regions that typically define implicit surfaces.  When polygonized, non-

manifold surfaces may have borders (i.e., edges of degree 1) and intersections (i.e.,

edges of degree 3 or more).  The object is defined by a list of region pairs whose

separating surfaces are of interest.

This simple method significantly complicates the polygonizer.  In particular, the

accurate polygonization of surface borders requires vertices internal to faces of the

polygonizing cell, which in turn require multiple intersections per cell edge and

the examination of all edges.  This in turn leads to the need for multiple, disjoint

surfaces.  Moreover, the accurate polygonization of surface intersections requires

vertices fully internal to the polygonizing cell.  This additional complexity,

however, is exercised only in those relatively few tetrahedra that contain borders or

intersections of surfaces.

The present polygonizer does not accommodate an arbitrarily complex intersection

of surface with polygonizing cell.  It does, however, accommodate an arbitrary

number of disjoint surfaces (limited, however, by the maximum number of edge

vertices, as described in section 4.5.2.1).  Non-disjoint surfaces are limited to a

single intersection per face and a single internal vertex per polygonizing cell.  The

accommodation, within a single polygonizing cell, of disjoint surfaces and multiple

face and multiple internal intersections could be the subject of future work.3

Other areas of future study include improved boundaries and reduced truncation.

In particular, although the accuracy of our face contour follower produces good
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approximations to smooth boundary edges, it performs poorly for sharp bends in

the boundary; a corner, for example, becomes beveled.  This can be mitigated by

improving the accuracy of the internal vertex location and allowing multiple face

intersections per face.  The non-manifold polygonizer is far from ideal, and we

have discussed aspects of its limited accuracy.  Nonetheless, the approach has

substantial potential, which we hope is demonstrated by the examples.

Ray-tracing is eminently able to render non-manifold, implicitly defined shapes.

Most ray-tracers return an identifier for a particular object or region of space,

usually as a means to accelerate performance or invoke anti-aliasing.  It would be

instructive to compare polygon rendered images (at both moderate and high

polygon resolutions) with line drawings and ray-traced images of non-manifolds.

Within the context of design, however, we prefer the ability to produce a concrete

instantiation of our object.  The power of this method of shape specification and

the extent to which an editor allows ready modification of shapes remain to be

determined.

4.10 Notes

1. In keeping with the theme of skeletal design, we may regard the non-trimmed

part of the parametric surface as an exo-skeleton.

2. The insight that a multi-regionalization of space was a conceptually elegant

solution to the problems associated with binary regions is due to Keith Ferguson.

3. Perhaps this can be accomplished by first decomposing the surfaces within the

cell into disconnected components, and then polygonizing each component

separately.  Correctly accommodating arbitrary complexity will eliminate the

compromises we have made concerning a vertex geometry that is independent of

client interest.  Alternatively, rather than accommodate arbitrary complexity

within each tetrahedra, our present restriction of a single vertex per face could be
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combined with adaptive subdivision techniques.  For example, for surfaces with

high curvature within a tetrahedron or for a tetrahedron with more than four

impinging regions, a tetrahedron can be subdivided into four similar tetrahedra

[Moore 1991].

The clearest way to the Universe

is through a forest.

(John Muir)


