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[Revised Aug 31, 2012. Corrected normalization factor in Equation 4.]

1 Introduction

Following our success with physically-based hair shading on Tangled [27], we began considering physically-
based shading models for a broader range of materials. With the physically-based hair model, we were
able to achieve a great degree of visual richness while maintaining artistic control. However, it proved
challenging to integrate the lighting of the hair with the rest of the scene which had still used tradi-
tional “ad-hoc” shading models and punctual lights. For subsequent films we wanted to increase the
richness of all of our materials while making lighting responses more consistent between materials and
environments and also wanted to improve artist productivity through the use of simplified controls.

When we began our investigation it wasn’t obvious which models to use or even how physically-
based we wanted to be. Should we be perfectly energy conserving? Should we favor physical parameters
like index-of-refraction?

For diffuse, Lambert seemed to be the accepted norm, while specular seemed to get most of the
attention in the literature. Some models such as Ashikhmin-Shirley (2000) [3] aimed to be intuitive
and practical while physically plausible, while others such as He et al. (1991) [12] provided a more
comprehensive physical model. Still others aimed at improved data fitting [15, 14, 22, 17, 4], but few
of these are appropriate for direct manipulation. We could have implemented several models and let
the artists choose and combine them, but then we’d have been back to the parameter explosion we
were trying to get away from.

One study of a large variety of measured materials was Ngan et al. (2005) [21] which compared five
popular models. Some models fared better than others overall, but interestingly, there was a strong
correlation between the models’ performances – some materials were well represented by all the models,
and for others, no model proved suitable. Adding an additional specular lobe helped in only a few of
the cases. This begs the question, what is not being represented in the difficult materials?

To answer this question and to evaluate BRDF models more intuitively we developed a new BRDF
viewer that could display and compare both measured and analytic BRDFs. We discovered new, intu-
itive ways to view measured BRDF data and we found interesting features in the measured materials
that weren’t well-represented by known models.

In these course notes we will share observations from studying measured materials along with
insights we’ve gleaned about which models fit the measured data and where they fall short. We will
then present our new model which is now being used on all current productions. We will also describe
our experience of adopting this new model in production and discuss how we were able to add the
right level of artistic control while preserving simplicity and robustness.

2 The microfacet model

We will define our BRDF and compare with measured materials in terms of the microfacet model [30,
7, 33]. The microfacet model postulates that if a surface reflection can occur between a given light
vector l and view vector v, then there must exist some portion of the surface, or microfacet, with a
normal aligned halfway between the l and v vectors. This “half-vector”, sometimes referred to as the
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microsurface normal, is thus defined as h = l+v
|l+v| . A general form of the microfacet model for isotropic

materials is:

f(l,v) = diffuse +
D(θh)F (θd)G(θl, θv)

4 cos θl cos θv
The diffuse term is a function of unknown form. Lambert diffuse is often assumed and is represented

by a constant value. For the specular term, D is the microfacet distribution function and is responsible
for the shape of the specular peak, F is the Fresnel reflection coefficient, and G is the geometric
attenuation or shadowing factor.

θl and θv are the angles of incidence of the l and v vectors with respect to the normal, θh is the angle
between the normal and the half-vector, and θd is the “difference” angle between l and the half-vector
(or, symmetrically, v and h).

Most physically plausible models not specifically described in microfacet form can still be inter-
preted as microfacet models in that they have a distribution function, a Fresnel factor, and some
additional factor which could be considered a geometric shadowing factor. The only real difference
between microfacet models and other models is whether they include the explicit 1

4 cos θl cos θv
factor that

comes from the microfacet derivation. For models that don’t include this factor, an implied shadowing
factor can be determined by multiplying the model by 4 cos θl cos θv after factoring out the D and F
factors.

3 Visualizing measured BRDFs

3.1 The “MERL 100”

Figure 1: Images slices of MERL 100 BRDFs.
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A set of 100 isotropic BRDF material samples was captured by Matusik et al. in 2003 [18] covering
a wide range of materials including paints, woods, metals, fabric, stone, rubber, plastic, and other
synthetic materials. This data set is freely available from Mitsubishi Electric Research Laboratories at
www.merl.com/brdf and is commonly used for evaluating new BRDF models. Slices of these BRDFs
are shown in Figure 1.

Each BRDF in the MERL 100 is densely sampled into a 90 by 90 by 180 cube along the θh, θd,
and φd axes respectively. These correspond to 1 degree increments except for the θh axis which was
warped to concentrate data samples near the specular peak. The measurements have been filtered
and extrapolated as needed so that there are no holes in the data. This is good in that the data is
easy to use, but it’s not clear how accurate the data is, particularly near the horizon. Because of this,
some researchers discard data near the horizon when performing fitting, but this data is still useful to
consider as it can have a profound effect on the material appearance.

3.2 BRDF Explorer

Figure 2: Disney BRDF Explorer

To examine the MERL measured materials and compare with analytic models, we developed a new
tool, the BRDF Explorer, shown in Figure 2. It is available as open source at github.com/wdas/brdf
and has the following features:

• Ability to load multiple analytic BRDFs written in GLSL
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• Ability to load measured BRDFs, including the anisotropic material samples captured by Ngan
et al. [21]

• Multiple data plots (3d hemispherical view, polar plot, and various cartesian plots)

• Computed albedo plot (i.e. directional-hemispherical reflectance)

• Image slice view with exposure controls

• Lit object view with importance-sampled IBL lighting

• Lit sphere view

• Dynamic UI controls for parametric models

This tool has been invaluable in comparing measured materials with existing analytic models as
well as in developing our new model. Surprisingly, it has also proven very useful for artists as an
interactive BRDF editor, giving them a deeper understanding of the model parameters and BRDF
space.

3.3 Image slice
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Figure 3: BRDF images slices for red-plastic and specular-red-plastic shown along with schematic view
of “slice space.”

One of the simplest, most intuitive ways to visualize a measured material is to simply view it as a
stack of images, and we’ve found this to be a very powerful tool to gain an intuition about the data. As
it turns out, all of the interesting features in the MERL 100 materials are visible in the φd = 90 slice.
A schematic view of this space along with two material samples is shown in Figure 3. Other slices are
roughly just warped versions of that slice as shown in Figure 4. This observation has been exploited in
recent work such as Romeiro (2008) [26] and Pacanowsi (2012) [24] as the basis for simplified isotropic
BRDF models of the form f(θh, θd).

In the image slice, the left edge represents the specular peak, and the top edge represents the Fresnel
peak. Note that along the bottom edge, the light and view vectors are coincident; thus the bottom
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Figure 4: Slices of specular-red-plastic for different values of φd, the azimuthal rotation of l around
the half-vector. The black region in the upper right corner represents a portion of the BRDF domain
where either the l or v vector is below the horizon.

edge represents retroreflection. The lower-right corner in particular represents grazing retroreflection.
Diffuse reflectance is exhibited over the entire BRDF space, but the middle of the image is generally
isolated to the diffuse response.

The schematic image in Figure 3 also includes an isoline of θl or θv. Many diffuse effects tend to
follow this contour. Note that these isolines straighten as φd approaches zero, and comparing φd slices
can give insight about which parts of the material response are due to diffuse reflection and which
are specular. Another hint is of course color; diffuse reflectance is due to subsurface scattering and
absorption which results in a visible tint, whereas specular reflectance comes from the surface and is
not tinted (unless the surface is metallic, in which case there is no diffuse component).

4 Observations from MERL materials

4.1 Diffuse observations

alumina-oxide light-red-paint gold-paint green-latexorange-paint yellow-matte-
plastic

Figure 5: Materials exhibiting diffuse color variation. Top row: point-light responses on rendered
spheres; bottom row: BRDF image slices.

Diffuse reflectance represents light that is refracted into the surface, scattered, partially absorbed,
and re-emitted. Given that some of the light is absorbed, the diffuse response will be tinted with the
surface color, and any portion of a non-metallic material that is tinted can be considered to be diffuse.
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Figure 6: Retroreflective responses of MERL 100 materials. Left: 50 smooth materials (f(0) > 0.5);
right: 50 rough materials (f(0) < 0.5). The peak near θh = 0 is the specular peak, and the peak (or
drop) near θh = 90 represents grazing retroreflection.

Figure 7: Point light response of red-plastic, specular-red-plastic, and Lambert diffuse.

The Lambert diffuse model assumes that the refracted light has scattered enough that it has lost all
directionality and thus the diffuse reflectance is constant. However, it can be seen in the various image
slices in Figures 1 and 5 that very few materials exhibit a Lambertian response. [Note: a Lambert
shader includes an n · l factor, but that’s part of the lighting integral, not the BRDF.]

As shown in Figure 6, many materials show a drop in grazing retroreflection, and many others
show a peak. This appears to be a diffuse phenomenon due to the apparent tinting in the image slices.
Notably, this is strongly correlated to roughness – smooth surfaces, i.e. those with a higher specular
peak, tend to have a shadowed edge, and rough surfaces tend to have a peak instead of a shadow.
This correlation can be seen in the retroreflective response curves and also in the rendered spheres in
Figure 7.

The grazing shadow for smooth surfaces is predicted by the Fresnel equations: at grazing angles,
more energy is reflected from the surface and less is refracted into the surface to be diffusely re-emitted.
However, diffuse models don’t generally consider the effect of surface roughness on Fresnel refraction
and either assume a smooth surface or ignore the Fresnel effect.

The Oren-Nayar model (1995) predicts a retroreflective increase for rough diffuse surfaces that
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Figure 8: BRDF slices and point-light responses of Lambert, Oren-Nayar, and Hanrahan-Krueger
diffuse models.

flattens the diffuse shape. However, this retroreflective peak isn’t as strong as the measured data and
the rough measured materials don’t generally exhibit flattening of the diffuse. The Hanrahan-Krueger
model (1993), derived from subsurface scattering theory, also predicts a flattening of the diffuse shape,
but doesn’t have a strong enough peak at the edge. In contrast to Oren-Nayar, this model assumes a
perfectly smooth surface. The Oren-Nayar and Hanrahan-Krueger models are compared in Figure 8.

Besides the retroreflective peak, additional diffuse variation can be seen in the image slices in
Figure 5. Both intensity and color variation can be seen that follows the θl / θv isolines. This may be
due in some cases to layered subsurface scattering. However, even layered subsurface scattering models
generally consider the surface to be smooth and don’t produce a strong retroreflective peak.

4.2 Specular D observations

The microfacet distribution function, D(θh), can be observed from the retroreflective responses of the
measured materials as shown in Figure 6. The materials were divided into two groups based on the
height of the peak which can be seen as an indication of surface roughness. The highest peak, from
steel, was more than 400. Once the peak flattens out, the remaining portion of the curve is likely due
to diffuse reflectance.

The vast majority of the MERL materials have specular lobes with tails that are much longer
than traditional specular models. An example is the chrome sample shown in Figure 9. The specular
response of this material is typical for smooth, highly polished surfaces, with a specular peak only
a couple of degrees wide and a specular tail that is many times wider. Curiously, the traditional
Beckmann, Blinn Phong, and Gaussian distributions are nearly identical at this width and cannot
represent either the peak or the tail well.

The need for a wider tail was the motivation for the GGX distribution introduced by Walter et al.
(2007) [33]; GGX has a much longer tail than other distributions but still fails to capture the glowy
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Figure 9: Several specular distributions fit to MERL chrome. Left: log-scale plots of specular peak vs
θh (degrees); black = chrome, red = GGX (α = 0.006), green = Beckmann (m = 0.013), blue = Blinn
Phong (n = 12000). Right: (clipped) point light responses from chrome, GGX, and Beckmann.

highlight of the chrome sample. The importance of modeling the tail response for fitting measured
materials was also the basis of two recent models, Löw et al. (2012) [17] and Bagher et al. (2012) [4].
Both of these models add an additional parameter to control the tail separately from the peak. Another
option for modeling the tail is the use of a second wider specular peak added to the first as suggested
by Ngan [21].

4.3 Specular F observations
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Figure 10: Normalized Fresnel responses of MERL 100 materials plotted at vs θd. Responses were
averaged over θh from 1 to 4 degrees, the incident response was subtracted off, and the curves were
then normalized over θd from 45 to 80 degrees for comparison of shape. Dashed line = theoretical
Fresnel response.

The Fresnel reflection factor, F (θd), represents the increase in specular reflection as the light and
view vectors move apart and predicts that all smooth surfaces will approach 100% specular reflection
at grazing incidence. For rough surfaces, 100% specular reflection will not be achieved, but reflectance
will still become increasingly specular.

Fresnel response curves for the MERL materials are shown in Figure 10. The curves were offset
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and scaled to compare the overall shape of their response. Every material shows some increase in
reflectance near θd = 90. This can also be seen along the top edges of the image slices in Figure 1.

Notably, the steepness of many of the curves near grazing angles is greater than predicted by
the Fresnel effect. This observation was in fact the motivation of the Torrance-Sparrow (1967) [30]
microfacet model to explain the “off-specular peak” witnessed at higher incidence angles. Note that
the 1

4 cos θl cos θv
factor in the microfacet model goes to infinity at grazing angles. The reason that this

is not a problem (both in the model and the real world) is that grazing reflectance is reduced by
shadowing effects of the microsurface. The G factor represents the shadowing of the light vector and,
symmetrically, the masking of the view vector, and keeps the grazing reflectance in check. But even
though the G factor represents shadowing, the combination of G with 1

4 cos θl cos θv
effectively amplifies

the Fresnel effect.

4.4 Specular G (and albedo) observations
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Figure 11: Albedo plots of MERL 100 materials. Left: 50 smooth materials; right: 50 rough materials.

It is difficult to isolate G in the measured data as it requires accurate estimation of the D and F
factors as well as isolation of specular from diffuse. However, the effect of G can be seen indirectly in
its effect on the directional albedo.

Albedo is the ratio of total reflected energy to total incident energy. In broad terms, it is repre-
sentative of the color of a surface and must be less than 1 for all wavelengths. Albedo can also be
considered for light coming from a single direction, such as from the sun, in which case the albedo
becomes a directional function dependent on incident angle, and must be less than 1 for all angles and
wavelengths.

The directional albedo of most materials is relatively flat for the first 70 degrees as seen in Figure 11,
and the albedo at grazing angles is strongly correlated with surface roughness. Smooth materials show
a slight increase around 75 degrees followed by a drop towards 90. Rough surfaces increase, often
significantly, all the way to the grazing incidence. Notably, the albedo values overall are fairly low,
with few materials having an albedo above 0.3.

The grazing retro-reflection exhibited by many rough materials also contributes significantly to this
gain, as evidenced by a chromatic tint in the albedo.

The albedo response corresponding to a selection of modeled G factors is shown in Figure 12 for
both a very smooth and a very rough surface. Notably, omitting G and 1

cos θl cos θv
entirely, referred to

as the “No G” model, results in an overly dark response at grazing angles. The important point here
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Figure 12: Albedo plots comparing several specular G models. All plots use the same D (GGX/TR)
and F factors. Left: smooth surface (α = 0.02); right: rough surface (α = 0.5). The “no G” model
excludes the G and 1

cos θl cos θv
factors.

is that the choice of the G function has a profound effect on the albedo which in turn has a profound
effect on surface appearance.

Several specular models have been developed specifically with the goal of producing a more plausible
albedo response curve [30, 29, 19, 20, 8, 9, 33, 10, 14]. For some of these, the intent is to make the albedo
perfectly flat to maintain energy balance. Based on the albedo plots of the Merl data in Figure 11, this
is not an unreasonable target though most of the materials do show some sort of grazing gain. Even
then, some of the grazing gain is likely due to non-specular effects.

With a few simplifying assumptions, it’s possible to derive the shadowing function from the mi-
crofacet distribution, D, following the method of Smith [29]. This was the approach used by Walter
(2007) and Schick (1994). As can be seen in Figure 12, the grazing reflectance of the Smith model from
Walter increases significantly for smooth surfaces, an effect that is not seen in the measured data. For
rougher values, the response seems more plausible. Note that the Smith G has an analytic form for
only a small number of functions and a tabular integration or some other approximation is often used.

A recent empirical model from Kurt et al. (2010) [14] takes a different approach and proposes
a data-fitting model with a free parameter. Figure 12 shows the Kurt model using α = 0.25; other
values of α can produce a wide range of albedo responses. Of concern though is that the Kurt albedo
diverges near grazing angles, significantly for rough distributions. Another option is to just use one
of the Smith G derivations from Walter, or even the simpler one from Schlick, and decoupling the G
roughness as a free parameter.

4.5 Fabric

Many of the fabric samples in the MERL database exhibit a specular tint at grazing angles and also
have a Fresnel peak that is stronger than with materials of comparable roughness. Examples of these
are shown in Figure 13.

The tinted grazing response could be explained by the fact that cloth often has transmissive fibers
which pick up the material color near object silhouettes. This could also explain additional gain for
cloth at grazing angles beyond what is predicted by the microfacet model.
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Figure 13: BRDF image slices of various fabric samples.

While many fabrics can have very complex material response, the MERL fabrics seem relatively
easy to model.

4.6 Iridescence

Figure 14: BRDF image slices of color-changing-paint-1, 2, and 3. Top row: original data; bottom
row: corresponding chroma images generated by scaling by 1/max(r, g, b) per pixel.

Three color changing paints, shown in Figure 14, exhibit coherent patches of color across the (θh, θd)
space with minimal dependence on φd. This appears to be a completely specular phenomenon given
that there’s very little reflectance away from the specular peak. This could be modeled simply by
modulating the specular hue as a function of θh and θd perhaps with a small texture map.

4.7 Data anomalies

Some anomalies in the MERL data are shown in Figure 15.

• Some of the very shiny materials, particularly the metals, exhibit asymmetric highlights sugges-
tive of lens flare or perhaps anisotropic surface scratches.

• Data past about 75 degrees appears to be extrapolated.

• The grazing response of the fabrics often has strange discontinuities, possibly due to the fabrics
being stretched over spheres during capture and wrinkled near the edges.

• Some of the woods exhibit specular modulation patterns along θd that might be due to wood
grain.
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Figure 15: Anomalies in the MERL data. From left to right: the point-light response of steel exhibits an
asymmetric highlight, a chroma plot of color-changing-paint1 shows extrapolated grazing data (visible
in all materials), white-fabric exhibits shadowing near grazing suggestive of a wrinkle, and fruitwood-241
(shown as stored, in warped-θh space) exhibits specular variation suggestive of wood grain.

• Subsurface scattering effects are baked in.

These are not criticisms of the data or the capture process but rather just a caution to not overfit
or overinterpret the data. It’s also potentially part of the answer to the question posed earlier about
why some materials are hard to fit.

5 Disney “principled” BRDF

5.1 Principles

In developing our new physically-based reflectance model, we were cautioned by artists that we need
our shading model to be art-directable and not necessarily physically correct. Because of this, our
philosophy has been to develop a “principled” model rather than a strictly physical one.

These were the principles that we decided to follow when implementing our model:

1. Intuitive rather than physical parameters should be used.

2. There should be as few parameters as possible.

3. Parameters should be zero to one over their plausible range.

4. Parameters should be allowed to be pushed beyond their plausible range where it makes sense.

5. All combinations of parameters should be as robust and plausible as possible.

We thoroughly debated the addition of each parameter. In the end we ended up with 1 color
parameter and 10 scalar parameters described in the following section.

5.2 Parameters

• baseColor - the surface color, usually supplied by texture maps.

• subsurface - controls diffuse shape using a subsurface approximation.

• metallic - the metallic-ness (0 = dielectric, 1 = metallic). This is a linear blend between two
different models. The metallic model has no diffuse component and also has a tinted incident
specular, equal to the base color.

• specular - incident specular amount. This is in lieu of an explicit index-of-refraction.
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• specularTint - a concession for artistic control that tints incident specular towards the base color.
Grazing specular is still achromatic.

• roughness - surface roughness, controls both diffuse and specular response.

• anisotropic - degree of anisotropy. This controls the aspect ratio of the specular highlight. (0 =
isotropic, 1 = maximally anisotropic).

• sheen - an additional grazing component, primarily intended for cloth.

• sheenTint - amount to tint sheen towards base color.

• clearcoat - a second, special-purpose specular lobe.

• clearcoatGloss - controls clearcoat glossiness (0 = a “satin” appearance, 1 = a “gloss” appearance).

Rendered examples of the effect of each of our parameters are shown in Figure 16.

subsurface

metallic

specular

roughness

anisotropic

specularTint

sheen

sheenTint

clearcoat

clearcoatGloss

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 16: Examples of the effect of our BRDF parameters. Each parameter is varied across the row
from zero to one with the other parameters held constant.
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5.3 Diffuse model details

Some models include a diffuse Fresnel factor such as:

(1− F (θl))(1− F (θd))

where F (θ) is the Fresnel factor for reflection.
[Note: from the Fresnel law for refraction, and to preserve Helmholtz reciprocity, it’s necessary to

account for refraction twice, once on the way in and once on the way out of the surface.]
As seen in the measured data observations, and based on our past studio experience, the Lambert

diffuse model is often too dark on the edges, and adding a Fresnel factor to make it more physically
plausible only makes it darker.

Based on our observations, we developed a novel empirical model for diffuse retroreflection that
transitions between a diffuse Fresnel shadow for smooth surfaces and an added highlight for rough
surfaces. A possible explanation for this effect may be that for rough surfaces light enters and exits
the sides of micro-surface features causing an increase in refraction at grazing angles. In any event,
our artists like it, and it is similar to features we used to have in our ad-hoc model except that it is
now more plausible and has a physical basis.

In our model, we ignore the index of refraction for the diffuse Fresnel factor and assume no incident
diffuse loss. This allows us to directly specify the incident diffuse color. We use the Schlick Fresnel
approximation and modify the grazing retroreflection response to go to a specific value determined
from roughness rather than zero.

Our base diffuse model is:

fd =
baseColor

π

(
1 + (FD90 − 1)(1− cos θl)5

) (
1 + (FD90 − 1)(1− cos θv)5

)
where

FD90 = 0.5 + 2 cos θ2
d roughness

This produces a diffuse Fresnel shadow that reduces the incident diffuse reflectance by 0.5 at grazing
angles for smooth surfaces and increases the response by up to 2.5 for rough surfaces. This seems to
provide a reasonable match to the MERL data and was also found to be artistically pleasing. BRDF
image slices of our model for various roughness values are shown in Figure 17.

0.0 0.2 0.4 0.6 0.8 1.0

Figure 17: BRDF images slices of our model for various roughness values.

Our subsurface parameter blends between the base diffuse shape and one inspired by the Hanrahan-
Krueger subsurface BRDF [11]. This is useful for giving a subsurface appearance on distant objects
and on objects where the average scattering path length is small; it’s not however a substitute for
doing full subsurface transport as it won’t bleed light into the shadows or through the surface.

5.4 Specular D details

Of the popular models, GGX has the longest tail. This model is in fact equivalent to the Trowbridge-
Reitz (1975) [31] distribution favored by Blinn (1977) [6] for its ability to match experimental data.
However, this distribution still does not have a long enough tail for many materials.
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Trowbridge and Reitz compared their distribution function along with several other distributions
to measurements of ground glass. One of the other distributions, from Berry (1923), has a very similar
form but with an exponent of 1 instead of 2 resulting in an even longer tail. This suggests a more general
distribution with a variable exponent, introduced here and dubbed Generalized-Trowbridge-Reitz, or
GTR:

DBerry = c/(α2 cos2 θh + sin2 θh)

DTR = c/(α2 cos2 θh + sin2 θh)2

DGTR = c/(α2 cos2 θh + sin2 θh)γ

In each of these distributions, c is a scaling constant, and α is a roughness parameter with values
between zero and one; α = 0 produces a perfectly smooth distribution (i.e. a delta function at θh = 0)
and α = 1 produces a perfectly rough or uniform distribution.

0 5 10 15 20 25 30
θd

GTR γ = 1

GTR γ = 2 (TR/GGX)

GTR γ = 10

Beckmann

Figure 18: GTR distribution curves vs θh for various γ values:

Preliminary fitting results suggest typical values of γ between 1 and 2. Interestingly, GTR with
γ = 3

2 is equivalent to the Henyey-Greenstein phase function for θ = 2θh; doubling of θh can be viewed
as extending the distribution from the hemisphere to the sphere.

A plausible microfacet distribution must be normalized, and for efficient rendering it must also
support importance sampling. Both require the distribution to be integrable over the hemisphere.
Fortunately, this function has a simple closed-form integral. Normalization and importance sampling
functions as well as an efficient anisotropic form are derived in Appendix B.

For our BRDF, we chose to have two fixed specular lobes, both using the GTR model. The primary
lobe uses γ = 2, and the secondary lobe uses γ = 1. The primary lobe represents the base material
and may be anisotropic and/or metallic. The secondary lobe represents a clearcoat layer overtop the
base material, and is thus always isotropic and non-metallic.

For roughness, we found that mapping α = roughness2 results in a more perceptually linear change
in the roughness. Without this remapping, very small and non-intuitive values were required for
matching shiny materials. Also, interpolating between a rough and smooth material would always
produce a rough result. The resulting interpolation is shown in Figures 16 and 19.

In place of an explicit index-of-refraction, or ior, our specular parameter determines the incident
specular amount. The normalized range of this parameter is remapped linearly to the incident specular
range [0.0, 0.08]. This corresponds to ior values in the range [1.0, 1.8], encompassing most common
materials. Notably, the middle of the parameter range corresponds to an ior of 1.5, a very typical
value, and is also our default. The specular parameter may be pushed beyond one to reach higher ior
values but should be done with caution. This mapping of the parameter has helped greatly in getting
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artists to make plausible materials given that real-world incident reflectance values are so unintuitively
low.

For our clearcoat layer, we use a fixed ior of 1.5, representative of polyurethane, and instead
allow artists to scale the overall strength of the layer using the clearcoat parameter. The normalized
parameter range corresponds to an overall scale of [0, 0.25]. This layer, even though it has a large
visual impact, represents a relatively small amount of energy so we don’t subtract any energy from the
base layer. When set to zero, the clearcoat layer is effectively disabled and incurs no cost.

5.5 Specular F details

For our purposes, the Schlick Fresnel approximation [28] is sufficient and substantially simpler than
the full Fresnel equations; the error introduced by the approximation is significantly less than the error
due to the other factors.

FSchlick = F0 + (1− F0)(1− cos θd)5

The constant, F0, represents the specular reflectance at normal incidence and is achromatic for
dielectrics and chromatic (i.e. tinted) for metals. The actual value depends on the index of refraction.
Note that specular reflection comes from microfacets and thus F depends on θd, the angle between
the light vector and the micronormal (i.e. the half-vector), not the angle of incidence with the surface
normal.

The Fresnel function can be seen as interpolating (non-linearly) between the incident specular
reflectance and unity at grazing angles. Note that the response becomes achromatic at grazing incidence
as all light is reflected.

5.6 Specular G details

For our model, we took a hybrid approach. Given that the Smith shadowing factor is available for the
primary specular, we use the G derived for GGX by Walter but remap the roughness to reduce the
extreme gain for shiny surfaces. Specifically, we linearly scale the original roughness from the [0, 1]
range to a reduced range, [0.5, 1], for the purposes of computing G. Note: we do this before squaring
the roughness as described earlier, so the final αg value is (0.5 + roughness/2)2.

This remapping was based on comparisons with measured data as well as artist feedback that the
specular was just “too hot” for small roughness values. This gives us a G function that varies with
roughness, is at least partially physically-based, and seems plausible. For our clearcoat specular we
don’t have a Smith G derivation and simply use the GGX G with a fixed roughness of 0.25, found to
be plausible and artistically pleasing.

5.7 Layering vs parameter blending

Once we settled on our new model we needed to decide how to integrate it into our shaders. The first
question was which parameters needed to be spatially varying, and the answer was all of them; if an
artist simply wants to put two different materials on a surface and mask between them, then they will
need to interpolate between all of the parameters. Also, the mask will be filtered and at at the blurred
edge of the mask the material response must remain plausible.

One benefit of our design principles in making all the parameters normalized and at least perceptu-
ally linear is that materials generally interpolate in a very intuitive way. An example of this is shown
in Figure 19.

Once we realized we could interpolate robustly, we wondered whether we could achieve all spa-
tial variation through masks. The idea is that the artist would choose a list of material presets and
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Figure 19: Interpolating between two very different materials, shiny metallic gold and blue rubber,
using our model.

Figure 20: A screenshot of our shader editor showing material layers. The variables in the mask
expressions refer to spatially varying shader modules, typically texture maps.

then simply blend between them using texture masks. This turned out to be phenomenally success-
ful, greatly simplifying workflow, improving material consistency, and making our shader evaluation
extremely efficient. Our shader UI is shown in Figure 20.

6 Production experience on Wreck-It Ralph

We deployed our “Principled Layers” shader on Wreck-It Ralph and used it on virtually every material
except for hair (which still uses the model developed for Tangled). A variety of materials can be seen
in Figure 21. Note that a separate normal was often used for the specular components to produce the
sparkle effect seen here on the ground, carpet, and other granulated materials.

In conjunction with our new material model, we also introduced new sampled area lights and IBLs
which are critical for making plausible materials look good; if you make a plausible shiny material and
light it with a point light your highlight will be a tiny dot, and allowing lighters to adjust material
properties, such as increasing roughness to fake an area light response, destroys the entire physically
based shading paradigm. The good news is that the lighters really like area lights and IBLs for their
controllability and also appreciate having a consistent material response. It’s also worth noting that
the new material model was both a motivator and an enabler in the switch to sampled lights in that
with our previous ad-hoc shading model it would have been to expensive for each reflectance module
to perform its own sampled light integration.

Based on the success on Wreck-It Ralph, our next shows are already using or planning to use our
new shading model without modification.
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Figure 21: Production still from Wreck-It Ralph.

6.1 Look development

One benefit of having a single BRDF on everything is that it simplified the development of our in-
teractive material editor. Our “Material Designer” renders out a g-buffer containing normals, object
IDs, and material layer masks. Using these channels, it quickly performs image-based relighting while
allowing all BRDF parameters to be interactively edited. Artists can rotate IBLs in real-time and see
the full effect of all parameters and layers in full context on production models.

Another benefit of the unified model is that it facilities a very simple material library consisting of
a set of presets saved out from the Material Designer. A material can be picked from the library and
added to a shader as an additional layer and then blended in with a mask. Layers can thus be quickly
built up like a Photoshop layer stack.

To judge a material fully, it’s critical to light it from all angles. As part of the switch to our new
material model we started proofing all elements using a variety of IBLs and all turntables include both
element and lighting rotations.

The end result of our new shader system is greatly improved productivity in look development,
much shorter training time for new artists, and more consistently high-quality results. Notably, most
of our look development artists were able to roll off of the show early due to the lack of the need for
material re-do’s in lighting. This was unprecedented.

6.2 Lighting

As mentioned earlier, a different approach to lighting was needed to work with the new material model.
This required a large learning curve. It was also a challenge adding back in artistic controls to lighting
without overly compromising the physically-based model.

One of the biggest changes in lighting was the move to using IBLs as local fill lights. Most IBLs
are used with light linking to specific elements in the shot and many have distance cutoffs. These were
a big improvement over previous environment maps which largely ignored the material characteristics.
Area lights were also a well received addition.

One of the biggest challenges for lighters initially was working with realistic light intensity values
and falloff. We eventually developed a non-physical falloff control that works by making the light source
virtually more distant while automatically adjusting the intensity to achieve the desired exposure at a
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given distance, however controlling light intensity and falloff remins a challenge for lighters.
Another challenge for lighting is the fact that specular highlights now require some sort of tone

mapping. Highlights on shiny materials can reach into the hundreds and simply clipping the values
appears harsh, introduces banding as each color channel clips at a different location, and forces the
core to always go to white. We developed a new global tone mapping operator that preserves color
values for most of the display range and rolls off the top end while preserving color and contrast. We
have a default setting that works reasonably in most cases but adjust the final values per shot during
color grading.

In the end though, the materials behave predictably which is a huge benefit to lighters and gives
them a starting place that is physically plausible.

6.3 Future work

One of the biggest issues currently is the lack of a intuitively controllable subsurface model. A key
aspect of this is BRDF integration. Ideally there would be a match between the BRDF and the
subsurface model such that the BRDF model could be used for distant objects, achieving equivalent
results. Also, an artist should be able to increase the mean-free path from zero to add a subsurface
effect to an object without changing the overall exposure – just the shape of the diffuse should change
(and light should bleed into the shadows if diffusion is enable).

We would like to go further with modeling cloth reflectance. We know we can add a special shader
to render cloth using captured reflectance data for particularly complicated cloth models, but we would
like to investigate direct modeling of a wider range of cloth materials. We don’t currently have a show
that is driving this need though.

We’ve also received requests to add iridescence to our model. This should be as simple as adding
specular color variation as previously discussed.
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specular-matte brdf model with importance sampling. Eurographics Short Presentations, 2001.
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A Selected history of BRDF models used in graphics

• Beckmann 1963 [5] provided a model for scattering from rough surfaces based on a Gaussian
distribution of surface slopes.

• Torrance and Sparrow 1967 [30] introduced the microfacet model. A Gaussian distribution of
microfacet angles was assumed and a microfacet shadowing factor was derived from simplified
geometric assumptions.
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• Smith 1967 [29] derived a shadowing function from the microfacet distribution. Notably, this
shadowing function varied with surface roughness.

• Phong 1975 [25] proposed a computationally simple model of a specular highlight using an ex-
ponentiated cosine.

• Trowbridge and Reitz 1975 [31] derived a new microfacet distribution based on average surface
irregularity of curved microsurfaces derived from an ellipsoid of revolution. They fit their model
to measured data for rough glass and compared their results with Gaussian, Beckmann, Sirohi,
and Berry distributions.

• Blinn 1977 [6] implemented the Torrance-Sparrow model with the Trowbridge-Reitz distribution
(chosen for its computational efficiency as well as its physical basis). Blinn also proposed a
microfacet distribution based based on the Phong model, commonly referred to as “Blinn Phong,”
by adapting it to the more physically-correct half-vector formulation.

• Cook and Torrance 1981 [7] implemented the Torrance-Sparrow model with the Beckmann dis-
tribution and studied spectral shifts due to the Fresnel factor.

• He, Torrance, Sillion, and Greenberg 1991 [12] presented a model that included specular, di-
rectional diffuse, and uniform diffuse components. The model is derived for polarized light and
simplified for unpolarized light.

• Ward 1992 [34] presented an anisotropic specular model derived from the Beckmann distribution.
Walter 2005 [32] provided a more efficient exact implementation.

• Lewis 1993 [16] proposed a “modified Phong” model that included a normalization term for
energy conservation.

• Hanrahan and Krueger 1993 [11] developed a diffuse BRDF model that approximates subsurface
transport.

• Oren and Nayar 1994 [23] derived a diffuse model for rough surfaces based on Lambertian mi-
crofacets.

• Schlick 1994 [28] developed rational approximations to the various components of the microfacet
model. The Schlick Fresnel approximation is widely used. Also, Schlick recognized the discon-
tinuity in the Torrance-Sparrow shadowing term and suggested an approximation of the Smith
shadowing function as an alternative. Schlick also presented an approximation to the Beckmann
distribution.

• Lafortune 1997 [15] proposed using a sum of arbitrarily-oriented Phong lobes as the basis for a
general model.

• Wolff, Nayar and Oren 1998 [35] developed an improved diffuse model for very smooth surfaces
which are darker at grazing angles than Lambert diffuse due to the Fresnel effect. This model is
also combined in an approximate form with the Oren Nayar model to represent a continuum of
smooth to rough diffuse surfaces.

• Neumann et al. 1999 [19] proposed a “stretched Phong” model intended for metallic surfaces
that has an albedo that becomes flat as the surface becomes shiny.

22



• Neumann et al. 1999b [20] proposed a process to “pump up” the albedo of arbitrary BRDFs to
improve energy balance. Previous models were shown to have an albedo that falls off too quickly
with incident angle (except for the Ward model which is shown to diverge at grazing incidence).
Each iterative pump-up divides the BRDF by a measured correction factor making the albedo
progressively flatter.

• Ashikhmin, Premože, and Shirley 2000 [2] derived a shadowing function from numeric integration
of arbitrary microfacet distributions.

• Ashikhmin and Shirley 2000 [3] presented a anisotropic Phong model that included a Fresnel-
weighted diffuse and energy conservation guarantees.

• Kelemen and Szirmay-Kalos 2001 [13] proposed an alternative shadowing term that approximates
the Torrance-Sparrow shadowing function with a differentiable form. A coupled-diffuse model is
also proposed such that the total albedo is always 1.

• Dür 2006 [8] improved the energy balance of the Ward model.

• Edwards et al. 2006 [9] proposed the “halfway vector disk” as a new domain for modeling
specular distributions with the goal of perfect energy conservation (albedo = 1). An alternate
non-conservative form is also presented for data fitting.

• Ashikhmin and Premože 2007 [1] presented the “distribution BRDF” which smooths out the
discontinuity in the shadowing term of Ashikhmin Shirley. A simple method for estimating
specular distributions from backscattering images (such as from a single flash-lit photograph) is
also provided.

• Walter et al. 2007 [33] derived Smith shadowing functions for the Phong and GGX distributions
and provided an approximation of Smith shadowing for the Beckmann distribution. Note: GGX
is equivalent to the Trowbridge-Reitz distribution.

• Romeiro et al. 2008 [26] showed than the MERL materials are well-represented by a simple
bivariate form, ρ(θh, thetad) and exploited this fact to proposed a simplified BRDF capture
method.

• Geisler-Moroder and Dür 2010 [10] further refined this model to restore Helmholtz reciprocity
and guarantee energy conservation.

• Kurt et al 2010 [14] extended the Beckmann distribution to anisotropic form and proposed a
new parameterized shadowing function giving control over albedo and improving fitting for some
materials. Two specular lobes are suggested for fitting many of the MERL materials.

• Nishino and Lombardi 2011 [22] proposed the “hemispherical exponential power distribution” or
“Hemi-EPD” which has an additional degree of freedom to improve fitting power. The Hemi-
EPD is used as a basis for the entire BRDF and parameters are fit to individual θd slices and
interpolated. Additionally, multiple lobes per θd slice are required for many materials.

• Löw et al. 2012 [17] proposed a new “ABC” microfacet distribution inspired by Rayleigh-Rice
smooth-surface scattering theory. Additionally, the “projected deviation vector” is presented as
an alternative to the half-vector parameterization for data fitting.

• Pacanowski et al. 2012 [24] developed a framework for fitting rational functions to general
isotropic BRDFs over the (θh, θd) domain. An anisotropic form is also proposed as a simple
scaling of the isotropic form with respect to φh.
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• Bagher et al. 2012 [4] proposed a new “shifted gamma” or “SGD” microfacet distribution derived
to fit the range of observed slopes in the MERL database. An approximation of the Smith
shadowing function for the SGD distribution is provided. Additionally, the Fresnel term is
modified with a correction term providing an additional degree of freedom, improving fitting
ability.

B GTR Microfacet Distribution

B.1 Microfacet distribution review

A plausible microfacet distribution must be normalized over the hemisphere such that the projected
area of the microfacets is 1 [33]: ∫

Ω
D(θh) cos θh dω = 1

or in spherical coordinates: ∫ 2π

0

∫ π/2

0
D(θh) cos θh sin θh dθh dφh = 1

For importance sampling, it is convenient to choose pdfh = D(θh) cos θh given that it is already
normalized. Note, pdfh is the density with respect to the half-vector; the density with respect to the
light vector l is:

pdfl =
pdfh

4(l · h)

To generate samples over the hemisphere, the pdf is split into spherical components, pdfh =
pdfθhpdfφh . For isotropic distributions this factorization is trivial as the distribution has no dependence
on φh and pdfφh = 1

2π . For anisotropic distributions, the factorization is accomplished by integrating
out θh to get:

pdfφh =
∫ π

2

0
pdfh sin θh dθh

pdfθh =
pdfφh
pdfh

Each component pdf is then integrated to form a cdf and then inverted to form a corresponding
sampling function:

cdf(x) =
∫ x

0
pdfx dx

x = cdf−1(ξ)

Given the two sampling functions and uniform random variables ξ1 and ξ2, θh and φh can be
computed and projected to the coordinate frame around the normal n, tangent x, and bitangent y to
form the half-vector h. Finally, given a v vector, l can be computed by reflecting h across v:

h = sin θh cosφhx + sin θh sinφhy + cos θhn
l = 2(v · h)h− v
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B.2 GTR

Following the above derivations, the normalized GTR distribution and sampling equations are:

DGTR(θh) =
(γ − 1)(α2 − 1)
π(1− (α2)1−γ)

1
(1 + (α2 − 1) cos2 θh)γ

(1)

φh = 2πξ1 (2)

cos θh =

√
1− [(α2)1−γ(1− ξ2) + ξ2]

1
1−γ

1− α2
(3)

This distribution is valid for any γ > 0, however, at γ = 1 there is a singularity. Taking the limit
as γ → 1 produces this alternate form:

DGTR1(θh) =
α2 − 1
π logα2

1
(1 + (α2 − 1) cos2 θh)

(4)

cos θh =

√
1− (α2)1−ξ2

1− α2
(5)

The values of γ = 3/2 and γ = 2 have simplified forms, the latter being equivalent to GGX:

DGTR3/2
(θh) =

α2 + α

2π
1

(1 + (α2 − 1) cos2 θh)3/2
(6)

cos θh =

√
1

1− α2

(
1− α2

(1 + (α− 1)ξ2)2

)
(7)

DGTR2(θh) =
α2

π

1
(1 + (α2 − 1) cos2 θh)2

(8)

cos θh =

√
1− ξ2

1 + (α2 − 1)ξ2
(9)

To form an anisotropic distribution, the roughness is varied with φ by replacing 1
α2 with cos2 φ

α2
x

+ sin2 φ
α2
y

.
For γ = 2 this results in:

DGTR2aniso =
1
π

1
αxαy

1(
sin2 θ

(
cos2 φ/α2

x + sin2 φ/α2
y

)
+ cos2 θ

)2 (10)

tanφh =
[
αy
αx

tan (2πξ1)
]

(11)

cos θh =

√
1− ξ2

1 +
[
1/
(
cosφ2/α2

x + sinφ2/α2
y

)
− 1
]
ξ2

(12)

Substituting these vector identities

h · x = sin θh cosφh
h · y = sin θh sinφh
h · n = cos θh

into equation (10) produces an efficient alternate form:

DGTR2aniso =
1
π

1
αxαy

1(
(h · x)2/α2

x + (h · y)2/α2
y + (h · n)2

)2 (13)
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Further, factoring tanφh from equation (11) into sinφh and cosφh, avoids special handling for the
quadrants of φh and also allows h to be calculated more directly:

sinφh =
αy sin (2πξ1)

r

cosφh =
αx cos (2πξ1)

r

tan θh = r

√
ξ2

1− ξ2

h′ =

√
ξ2

1− ξ2
[αx cos (2πξ1) x + αy sin (2πξ1) y] + n (14)

h =
h′

|h′|
(15)

Note: h′ is the projected half-vector, tan θh cosφhx + tan θh sinφhy + n, and r is a normalization
factor that can be ignored due to cancellation.

For arbitrary values of γ, the normalization of the anisotropic distribution unfortunately does not
have a closed form.
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