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Abstract. Existing approaches and datasets for face aging produce re-
sults skewed towards the mean, with individual variations and expression
wrinkles often invisible or overlooked in favor of global patterns such as
the fattening of the face. Moreover, they offer little to no control over
the way the faces are aged and can difficultly be scaled to large images,
thus preventing their usage in many real-world applications. To address
these limitations, we present an approach to change the appearance of
a high-resolution image using ethnicity-specific aging information and
weak spatial supervision to guide the aging process. We demonstrate the
advantage of our proposed method in terms of quality, control, and how
it can be used on high-definition images while limiting the computational
overhead.
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1 Introduction

Fig. 1: High-resolution faces aged in a continuous manner with our approach

Face aging is an image synthesis task in which a reference image must be
transformed to give the impression of a person of different age while preserv-
ing the identity and key facial features of the subject. When done correctly,
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this process can be used in various domains, from predicting the future appear-
ance of a missing person to entertainment and educational uses. We focus on
achieving high-resolution face aging, as it is a required step towards capturing
the fine details of aging (fine lines, pigmentation, etc.). In recent years, Gen-
erative Adversarial Networks [14] have allowed a learning-based approach for
this task. The results, however, often lack in quality and only provide limited
aging options. Popular models such as StarGAN [10] fail to produce convincing
results without additional tweaks and modifications. This partially stems from
the choice of reducing aging to one’s real or apparent age [1]. Also, current ap-
proaches treat aging as a step-wise process, splitting age in bins (30-40, 40-50,
50+, etc.) [2, 16,30,32,34].

In reality, aging is a continuous process that can take many forms depending
on genetic factors such as facial features and ethnicity, as well as lifestyle choices
(smoking, hydration, sun damage, etc.) or behavior. Notably, expression wrin-
kles are promoted by habitual facial expressions and can be prominent on the
forehead, upper lip, or at the corner of the eyes (crow’s feet). In addition, aging
is subjective as it depends on the cultural background of the person assessing
the age. These factors call for a more fine-grained approach to face aging.

In this paper, we aim to obtain high-resolution face aging results by cre-
ating a model capable of individually transforming the local aging signs. Our
contributions are as follows:

– We show that a curated high-resolution dataset in association with a
combination of novel and existing techniques produces detailed state-of-
the-art aging results.

– We demonstrate how clinical aging signs and weak spatial supervision
allows fine-grained control over the aging process of the different parts of
the face.

– We introduce a patch-based approach to enable inference on high-resolution
images while keeping the computational cost of training the model low.

2 Related Work

Conditional Generative Adversarial Networks Generative Adversarial
Networks [14] leverage the principle of an adversarial loss to force samples gen-
erated by a generative model to be indistinguishable from real samples. This
approach led to impressive results, especially in the domain of image generation.
GANs can be extended to generate images based on one or several conditions.
The resulting Conditional Generative Adversarial Networks are trained to gen-
erate images that satisfy both the realism and condition criteria.

Unpaired Image-to-Image Translation Conditional GANs are a powerful
tool for image-to-image translation [18] tasks, where an input image is given to
the model to synthesize a transformed image. StarGAN [10] introduced a way to
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use an additional condition to specify the desired transformation to be applied.
They propose to feed the input condition to the generator in the form of feature
maps [10] concatenated to the input image, but new approaches use more com-
plex mechanisms such as AdaIN [20] or its 2D extension SPADE [23] to give the
generator the condition in a more optimal manner. Where previous techniques
required pixel-aligned training images in the different domains, recent works
such as CycleGAN [36] and StarGAN [10] introduced a cycle-consistency loss
to enable unpaired training between discrete domains. This has been extended
in [24] to allow translation between continuous domains.

Face Aging To age a face from a single picture, traditional approaches use
training data of either one [2, 16, 29, 32, 34, 35] or multiple images [27, 30] of
the same person, along with the age of the person when the picture was taken.
The use of longitudinal data, with multiple photos of the same person, offers
less flexibility as it creates a heavy time-dependent constraint on the dataset
collection.

The age is usually binned into discrete age groups (20-30, 30-40, 40-50, 50+,
etc.) [2,16,32,34], which frames the problem more simply, but limits the control
over the aging process and doesn’t allow the training to leverage the ordered
nature of the groups. [29, 35] address this limitation by considering age as a
continuous value. However, aging isn’t objective because different skin types age
differently, and different populations look for different signs of aging. Focusing
on the apparent age as the guide for aging thus freezes the subjective point of
view. Such approaches cannot be tailored to a population’s perspective without
requiring additional age estimation data from their point of view.

To improve the quality and level of details of the generated images, [34] use
the attention mechanism from [24] in the generator. The generated samples are,
however, low-definition images which are too coarse for real-world applications.
Working at this scale hides some difficulties of generating realistic images, such
as skin texture, fine lines, and the overall sharpness of the details.

3 Proposed Approach

3.1 Problem Formulation

In this work, our goal is to use single unpaired images to train a model able to
generate realistic high-definition (1024× 1024) aged faces, with continuous con-
trol over the fine-grained aging signs to create smooth transformations between
the original and transformed images. This is a more intuitive approach, as aging
is a continuous process and age group bins do not explicitly enforce a logical
order.

We propose the use of ethnic-specific skin atlases [4–7,13] to incorporate the
ethnic dimension of clinical aging signs. These atlases define numerous clinical
signs such as the wrinkles underneath the eye, the ptosis of the lower part of the
face, the density of pigmentary spots on the cheeks, etc. Each sign is linked to a
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specific zone on the face and scored on a scale that depends on ethnicity. Using
these labels in addition to the age make for a more complete representation of
aging, and allows transforming images with various combination of clinical signs
and scores.

The aging target is passed to the network in the form of an aging map
(Fig. 2). To do so, we compute facial landmarks and define the relevant zone for
each aging sign. Each zone (e.g. forehead) is then filled with the score value of
the corresponding sign (e.g. forehead wrinkles). We use the apparent age to fill
in the blanks where the clinical signs are not defined. Finally, we coarsely mask
the background of the image.

Treating the whole image at once would be ideal, but training a model with
1024×1024 images requires large computational resources. Our approach allows
us to train the model by patch, using only part of the image during training,
and the corresponding part of the aging map. Patch-based training reduces the
context (i.e. global information) for the task but also reduces the computational
resources required to process high-resolution images in large batches, as recom-
mended in [8]. We leverage this to use a large batch size on small patches of
128× 128, 256× 256 or 512× 512 pixels.

The major drawback of the patch-based training is that small patches can
look similar (e.g. forehead and cheek) yet must be aged differently (e.g. re-
spectively horizontal and vertical wrinkles). To avoid ”mean” wrinkles on these
ambiguous zones, we give the generator two patches coming respectively from a
horizontal and a vertical gradient location map ( , ). This allows the model
to know the position of the patch in order to differentiate between potentially
ambiguous zones.

(a) 0.11 (b) 0.36 (c) 0.31 (d) 0.40 (e)

Fig. 2: Aging sign zones (a-d) and their associated scores used to construct the
aging map (e). The brightness of each pixel represents the normalized score of
the localized clinical sign (wrinkles at the corner of the lips (a), underneath the
eye wrinkles (b), nasolabial fold wrinkles (c), inter-ocular wrinkles (d), etc.) or
the age where no sign is defined

3.2 AMGAN - Network Architectures

We base our training process on the StarGAN [10] framework. Our generator is a
fully convolutional encoder-decoder derived from [11] with SPADE [23] residual
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blocks in the decoder to incorporate the aging and location maps. This allows
the model to leverage the spatial information present in the aging map, and use
it at multiple scales in the decoder. To avoid learning unnecessary details, we
use the attention mechanism from [24] to force the generator to transform the
image only where needed. The discriminator is a modified version of [10], and
produces the outputs for the WGAN [3] objective (given for an image i and
aging map a in Equation 1), the estimation of the coordinates of the patch, and
the low-resolution estimation of the aging map. Fig. 3 and Fig. 4 present the
patch-based training workflow.

LWGAN = Ei[D(i)]− Ei,a[D(G(i, a))] (1)

Fig. 3: Generator of our proposed patch-based training. We begin by cropping
a patch from the image I, aging map A, and location maps X and Y . The
generator transforms the image patch Ip according to the map and location

3.3 Aging Maps

To avoid penalizing the model for failing to place the bounding boxes with pixel-
perfect precision, we blur the aging maps to smooth the edges and compute the
discriminator regression loss on downsampled 10 × 10 maps. This formulation
allows packing the information in a more compact and meaningful way than
as individual uniform feature maps [10, 30, 34, 35]. Our approach only requires
multiple feature maps when there are large overlaps between signs (e.g. forehead
pigmentation and forehead wrinkles). Considering an image patch i and aging
map patch a, the loss is given in Equation 2.

LAge = Ei[‖a−DAge(G(i, a))‖2] (2)
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Fig. 4: The discriminator produces the real/fake output, the estimated location
of the patch, and the estimated local aging map. The outputs are respectively
penalized with the WGAN objective, location, and aging map loss functions.
The cycle consistency loss ensures the transformation preserves the key features
of the original image

3.4 Location Maps

As in [22], we use two orthogonal gradients as location maps ( , ) to help
the generator apply relevant aging transformations to a given patch. The (x, y)
coordinates of the patch could be given to the generator as two numbers instead
of linear gradients maps, but doing so would prevent the use of the model on
the full-scale image as it would break its fully-convolutional nature. Considering
an image patch i and aging map patch a located at coordinates (x, y), the loss
is given in Equation 3.

LLoc = Ei[‖(x, y)−DLoc(G(i, a))‖2] (3)

3.5 Training

The models are trained with the Adam [21] optimizer with β1 = 0, β2 = 0.99 and
learning rates of 7× 10−5 for G and 2× 10−4 for D. Following the two time-scale
update rule [17], both models are updated at each step. Additionally, learning
rates for both G and D are linearly decayed to zero over the course of the training.
To enforce cycle-consistency, we use the perceptual loss [33] with λCyc = 100.
For the regression tasks, we use λLoc = 50 to predict the (x,y) coordinates
of the patch and λAge = 100 to estimate the downsampled aging map. The
discriminator is penalized with the original gradient penalty presented in [15]
with λGP = 10. Our complete loss objective function is given in Equation 4.

L = LWGAN + λCycLCyc + λAgeLAge + λLocLLoc + λGPLGP (4)
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3.6 Inference

For inference, we use exponential moving average [31] over G’s parameters. The
trained generator can be used directly on the 1024× 1024 image no matter the
size of the patch used during training thanks to the fully convolutional nature
of the network and the use of continuous 2D aging maps. We can either create a
target aging map manually or use the face landmarks and target scores to build
one.

4 Experiments

4.1 Experimental Setting

Most face aging datasets [9, 25, 26] suffer from a lack of diversity in terms of
ethnicity [19], and focus on low-resolution images (up to 250× 250 pixels). This
isn’t sufficient to capture fine details related to skin aging. Moreover, they often
fail to normalize the pose and expression of the faces (smiling, frowning, raised
eyebrows), which results in accentuated wrinkles unrelated to aging (mostly
nasolabial wrinkles, crow’s feet wrinkles, forehead wrinkles and wrinkles under-
neath the eye). Finally, the lack of fine-grained information on the aging signs
causes other approaches to capture unwanted correlated features such as the
fattening of the face, as observed in datasets such as IMDB-Wiki [26]. These
effects can be observed in Fig. 5.

To address these issues, we tested our models on two curated high-resolution
datasets, using generated aging maps or uniform aging maps to highlight the
rejuvenation/aging.

4.2 Flicker Faces High-Quality Dataset (FFHQ)

To tackle the high-resolution aging problem, we have tested our approach on
the FFHQ dataset [20]. To minimize the issues in lighting, pose, and facial ex-
pressions, we applied simple heuristics to select a subset of the dataset of better
quality. To do so, we extracted facial landmarks from all faces and used them
to remove all images where the head was too heavily tilted left, right, up, or
down. In addition, we removed all images with an open mouth to limit artificial
nasolabial fold and underneath the eye wrinkles. Finally, we used a HOG [12]
feature descriptor to remove images with hair covering the face. This selection
brings down the dataset from 70k+ to 10k+ images. Due to the extreme diver-
sity of the FFHQ dataset, the remaining images are still far from being perfect,
especially in terms of lighting color, direction, and exposure.

To obtain the scores of the individual aging signs on these images, we used
aging sign estimation models based on the ResNet [28] architecture that we
trained on the dataset described in Section 4.3. Finally, we generated the ground
truth aging maps using the landmarks as a basis for the coarse bounding-boxes.
We trained our model on 256×256 patches randomly selected on the 1024×1024
face.
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(a) Wang et al. [30]

(b) Heljakka et al. [16]

(c) Song et al. [27]

(d) Antipov et al. [2]

(e) Upchurch et al. [29]

Fig. 5: Previous approaches operate on low-resolution images and suffer from a
lack of wrinkles dynamic range, especially for expression wrinkles (a). They are
also prone to color shifts and artifacts (b, c, d, e), as well as unwanted correlated
features such as the fattening of the face (d), or the addition of glasses (e)

4.3 High-Quality Standardized Dataset

To obtain better performance, we have collected a dataset of 6000 high-resolution
(3000×3000) images of faces, centered and aligned, spanning most ages (18-80),
genders, and ethnicities (African, Caucasian, Chinese, Japanese and Indian). The
images were labeled using ethnicity-specific clinical aging sign atlases [4–7, 13]
and scored on signs covering most of the face (apparent age, forehead wrinkles,
nasolabial fold, underneath the eye wrinkles, upper lip wrinkles, wrinkles at the
corner of the lips and ptosis of the lower part of the face).

5 Results

5.1 FFHQ

Despite the complexity of the dataset, and without ground truth age values, our
patch-based model is able to transform the individual wrinkles on the face in a
continuous manner.

Fig. 6 displays how the model was able to transform the different wrinkles
despite the complexity of the patch-based training, the large variation in lighting
in the dataset, and the unbalance between grades of clinical signs/age, with a
vast majority of young subjects with few wrinkles. Fig. 7 highlights the control



AgingMapGAN (AMGAN): High-Resolution Face Aging 9

Fig. 6: Rejuvenation (left), original (center) and aging (right) for faces of different
age and ethnicity from FFHQ dataset using our approach

Fig. 7: Where no sign is defined, we fill the map with the age. This helps the
model learn global features like the greying of the hair (left). Using individual
clinical signs in an aging map allows us to age all signs but keep the appearance
of the hair intact (right)

we have over the individual signs, allowing aging the face in a controllable way
that wouldn’t be possible with the only label of the age.

5.2 High-Quality Standardized Dataset

On our standardized images, and with better coverage across ethnicity and aging
signs, our model demonstrates state-of-the-art performance (Fig. 1, Fig. 8), with
a high level of detail, realism, and no visible artifacts, color shifts or unwanted
correlated features as seen in previous works (Fig. 5). The aging process is suc-
cessful along the continuous spectrum of age maps, allowing realistic images
to be generated for a diverse set of sign severity values (Fig. 9). More exam-
ples as well as HD videos are available in the supplementary materials and at
https://despoisj.github.io/AgingMapGAN/.

https://despoisj.github.io/AgingMapGAN/
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Fig. 8: Faces aged in a continuous manner. No zone is left unchanged, even
the forehead or the sagging of lower part of the face. The complementary age
information used to fill the gap can be seen on the thinning or greying of the
eyebrows. Note: zooming is recommended to see the fine details of the figure

(a) (b) (c) (d) (e) (f)

Fig. 9: Same face (a) aged with different aging maps. (b) rejuvenates all signs
except for the nasolabial, corner of the lips and underneath the eyes wrinkles
on the right part of the face. (c) only ages the bottom of the face and (d) only
the top. (e) only ages the wrinkles underneath the eye. (f) ages the face in an
asymmetric fashion, namely the right wrinkles underneath the eyes and the left
nasolabial fold
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5.3 Evaluation Metrics

To be considered successful, the task of face aging requires three criteria to be
met: the image must be realistic, the identity of the subject must be preserved,
and the face must be aged. These are respectively enforced during training thanks
to the WGAN objective function, cycle-consistency loss, and aging map estima-
tion loss. By nature, one single metric couldn’t ensure that all criteria are met.
For instance, the model could leave the input image without altering it, and still
succeed in realism and identity. Contrarily, the model could succeed in aging
but fail realism and/or identity. If one model isn’t superior to another on every
metric, we need to choose a trade-off.

Our experiments on FFHQ and our high-quality standardized dataset never
displayed any issue in the preservation of the subject identity. This is a con-
sequence of the use of the attention mechanism that allows the generator to
preserve the key facial features of the face. As a result, we chose to focus on the
realism and aging criteria for our quantitative evaluation. Because our approach
focuses on aging as a combination of aging signs instead of relying solely on age,
we don’t use the accuracy of the target age as a metric. Instead, we use the
Fréchet Inception Distance (FID) [17] to assess the realism of our images, and
the Mean Average Error (MAE) for the accuracy of the target aging signs.

To do so, we use half of our dataset as a reference for real images, and the rest
as the images to be transformed by our model. The aging maps used to transform
these images are chosen randomly from the ground truth labels to ensure a
distribution of generated images that follows the original dataset. We estimate
the value of individual scores on all generated images using dedicated aging sign
estimation models based on the ResNet [28] architecture. As a reference for the
FID scores, we compute the FID between both halves of the real image dataset.
Note that the size of our dataset prevents us from computing the FID on the
recommended 50k+ [17,20], thus leading to the overestimation of the value. This
can be seen when computing the FID between real images only, giving a baseline
FID of 49.0. The results are presented in Table 1.

Table 1: Fréchet Inception Distance and Mean Average Error for our different
models

Method Patch Size FID↓ MAE↓
Real Images - 49.0 -

AMGAN (Ours) 512× 512 110.1 0.14

AMGAN (Ours) 256× 256 110.7 0.14
w/o Aging Maps 256× 256 141.6 0.17

AMGAN (Ours) 128× 128 112.9 0.17
w/o Location Maps 128× 128 140.0 0.20
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5.4 Comparison Between Age and Clinical Signs

When trained without clinical signs, using only the age to create a uniform aging
map, the model still gives convincing results, with low FID and estimated age
MAE. (Table 2).

By comparing the results with the full aging map approach, however, it ap-
pears that some wrinkles don’t exhibit their full range of dynamics. This is due
to the fact that not all aging signs need to be maximized in order to reach the
limit age of the dataset. In fact, the 150 oldest individuals of our standardized
dataset (65 to 80 years old) display a median standard deviation of their normal-
ized aging signs of 0.18, highlighting the many possible combinations of aging
signs in old people (Supplementary Materials, Fig. 1). For example, signs such
as the forehead wrinkles are highly dependant on the facial expressions of the
subject and are integral parts of the aging process. This an issue for the age-only
model because it only offers one way to age a face.

To the contrary, the faces aged with the aging map offer much more control
over the aging process. By controlling each individual sign of aging, we can
choose whether to apply these expression wrinkles or not. A natural extension
of this benefit is the pigmentation of the skin, which is viewed in some Asian
countries as a sign of aging. An age-based model cannot produce aging for these
countries without having to re-estimate the age from the local perspective. This
doesn’t scale, unlike our approach which, once trained with every relevant aging
sign, can offer a face aging experience customized to the point of view of different
countries, all in a single model and without additional labels.

Table 2: Fréchet Inception Distance and Mean Average Error for our model with
clinical signs, and with age only

Method Patch Size Control FID MAE

AMGAN (Ours) 256× 256 3 110.7 0.143
w/o Clinical Signs 256× 256 7 101.3 0.116

5.5 Ablation Study

Effect of Patch Size When training the model for a given target image res-
olution (1024 × 1024 pixels in our experiments), we can choose the size of the
patch used for the training. The bigger the patch, the more context the model
will have to perform the aging task. For the same computation power, however,
larger patches cause the batch size to be smaller, which hinders the training [8].
We conducted experiment using patches of 128× 128, 256× 256 and 512× 512
pixels. Fig. 10 shows that all patch sizes manage to age the high-resolution face
but to various degrees of realism. The smallest patch size suffers most from the
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lack of context and produces results that are inferior to the other two, with vis-
ible texture artifacts. The 256× 256 patch gives convincing results, with minor
imperfection only visible when compared to the 512 × 512 patch. These results
suggest that we could apply this technique to larger resolutions, such as with
patches of 512× 512 on 2048× 2048 images.

Patch Size

128× 128

256× 256

512× 512

Fig. 10: Results of rejuvenation (left) and aging (right) for different patch sizes
on a 1024× 1024 image

Location Maps To see the contribution of the location maps, we compared our
model trained with and without them. As expected, the effect of the location
maps is more prominent on small patch sizes, where the ambiguity is high. Fig. 11
shows how on small patch sizes and in the absence of location information, the
model is unable to differentiate similar patches from different parts of the face.
It is, therefore, unable to add wrinkles that are coherent with the location, and
generates generic diagonal ripples. This effect is less present on larger patch sizes
because the location of the patch is less ambiguous.

Spatialization of Information We compare our proposed aging maps against
the baseline method of formatting conditions, namely to give all sign scores as
individual uniform feature maps. Since not every sign is present in the patch,
especially when the patch size is small, most of the processed information is
of no use to the model. The aging maps represent a simple way of only giving
the model the labels present in the patch, in addition to their spatial extent
and location. Fig. 12 highlights the effect of the aging map. On small patches
(128× 128, 256× 256 pixels), the model struggles to create realistic results. The
aging map helps reduce the complexity of the problem.
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Fig. 11: Face aged with smallest patch size without (left) and with (right) location
maps, along with the difference with the original image. The location maps
eliminate the presence of diagonal texture artifacts, especially on the forehead
where they allow horizontal wrinkle to appear

Fig. 12: Face aged with medium patch size with individual uniform condition
feature maps (left) and proposed aging maps (right), along with the difference
with the original image. The aging maps help make the training more efficient
thanks to denser spatialized information, and produce more realistic aging. The
difference highlights the small unrealistic wrinkles for the baseline technique

6 Conclusion

In this paper, we presented the use of clinical signs to create aging maps for face
aging. Thanks to this technique, we demonstrated state-of-the-art results on
high-resolution images with complete control over the aging process. Our patch-
based approach allows conditional generative adversarial networks to be trained
on large images while keeping a large batch size. This technique is applicable to
various problems and can be used to tackle high-resolution problems with limited
computational resources. In the future, the use of longitudinal data following the
same person over time would allow a better understanding of the evolution of
the aging signs on an individual basis, and therefore better personalizing of face
aging factoring lifestyle, environmental and behavioral components.
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