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Figure 1: Given a semantically-labeled block world as input (insets), GANCraft generates high-resolution view-consistent
realistic outputs. It unsupervisedly learns to translate the input world to a realistic-looking world in the absence of paired
training data across these two worlds. Click on image to play video in web browser.

Abstract

We present GANcraft, an unsupervised neural rendering
framework for generating photorealistic images of large 3D
block worlds such as those created in Minecraft. Our method
takes a semantic block world as input, where each block is
assigned a semantic label such as dirt, grass, or water. We
represent the world as a continuous volumetric function and
train our model to render view-consistent photorealistic im-
ages for a user-controlled camera. In the absence of paired
ground truth real images for the block world, we devise a
training technique based on pseudo-ground truth and adver-
sarial training. This stands in contrast to prior work on neu-
ral rendering for view synthesis, which requires ground truth
images to estimate scene geometry and view-dependent ap-
pearance. In addition to camera trajectory, GANcraft allows
user control over both scene semantics and output style. Ex-
perimental results with comparison to strong baselines show
the effectiveness of GANcraft on this novel task of photoreal-
istic 3D block world synthesis. The project website is avail-
able at https://nvlabs.github.io/GANcraft/.

1. Introduction
Imagine a world where every Minecrafter is a 3D painter!

Advances in 2D image-to-image translation [3, 22, 50]
have enabled users to paint photorealistic images by draw-
ing simple sketches similar to those created in Microsoft
Paint. Despite these innovations, creating a realistic 3D

scene remains a painstaking task, out of the reach of most
people. It requires years of expertise, professional software,
a library of digital assets, and a lot of development time.
In contrast, building 3D worlds with blocks, say physical
LEGOs or their digital counterpart, is so easy and intuitive
that even a toddler can do it. Wouldn’t it be great if we could
build a simple 3D world made of blocks representing various
materials (like Fig. 1 (insets)), feed it to an algorithm, and
receive a realistic looking 3D world featuring tall green trees,
ice-capped mountains, and the blue sea (like Fig. 1)? With
such a method, we could perform world-to-world translation
to convert the worlds of our imagination to reality. Needless
to say, such an ability would have many applications, from
entertainment and education, to rapid prototyping for artists.

In this paper, we propose GANcraft, a method that pro-
duces realistic renderings of semantically-labeled 3D block
worlds, such as those from Minecraft (www.minecraft.
net). Minecraft, the best-selling video game of all time with
over 200 million copies sold and over 120 million monthly
users [2], is a sandbox video game in which a user can ex-
plore a procedurally-generated 3D world made up of blocks
arranged on a regular grid, while modifying and building
structures with blocks. Minecraft provides blocks repre-
senting various building materials—grass, dirt, water, sand,
snow, etc. Each block is assigned a simple texture, and the
game is known for its distinctive cartoonish look. While
one might discount Minecraft as a simple game with simple
mechanics, Minecraft is, in fact, a very popular 3D content
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Representative 3D view Across W/o paired
method consistent? worlds? data?

CycleGAN [72], MUNIT [21] 7 3 3
pix2pix [22], SPADE [50] 7 3 7

wc-vid2vid [36] 3 3 7
NeRF [39], NSVF [31] 3 7 7

GANcraft (ours) 3 3 3

Table 1: Given a Minecraft world, our goal is to train a
neural renderer that can convert any camera trajectory in
the Minecraft world to a sequence of view-consistent im-
ages in the real world, at test time. The training needs to
be achieved without paired Minecraft–real data as it does
not exist. Among prior work, only unsupervised image-
to-image translation methods such as CycleGAN [72] and
MUNIT [21] can work in this setting. However, they do not
generate 3D view-consistent outputs. Neural radiance field-
based methods like NeRF [39] and NSVF [31] are suited for
novel view synthesis. They cannot handle the Minecraft–real
domain gap. All other prior works require paired training
data unavailable in our setting. GANcraft, our proposed
method, can generate 3D view-consistent Minecraft-to-real
synthesis results without paired Minecraft–real training data.

creation tool. Minecrafters have faithfully recreated large
cities and famous landmarks including the Eiffel Tower!
The block world representations are intuitive to manipulate
and this makes it well-suited as the medium for our world-
to-world translation task. We focus on generating natural
landscapes, which was also studied in several prior work in
image-to-image translation [3, 50].

At first glance, generating a 3D photorealistic world from
a semantic block world seems to be a task of translating
a sequence of projected 2D segmentation maps of the 3D
block world, and is a direct application of image-to-image
translation . This approach, however, immediately runs into
several serious issues. First, obtaining paired ground truth
training data of the 3D block world, segmentation labels,
and corresponding real images is extremely costly if not
impossible. Second, existing image-to-image translation
models [21, 50, 62, 72] do not generate consistent views [36].
Each image is translated independent of the others.

While the recent world-consistent vid2vid work [36]
overcomes the issue of view-consistency, it requires paired
ground truth 3D training data. Even the most recent neural
rendering approaches based on neural radiance fields such
as NeRF [39], NSVF [31], and NeRF-W [37], require real
images of a scene and associated camera parameters, and are
best suited for view interpolation. As there is no paired 3D
and ground truth real image data, as summarized in Table 1,
none of the existing techniques can be used to solve this new
task. This requires us to employ ad hoc adaptations to make
our problem setting as similar to these methods’ require-
ments as possible, e.g. training them on real segmentations

instead of Minecraft segmentations.
In the absence of ground truth data, we propose a frame-

work to train our model using pseudo-ground truth photoreal-
istic images for sampled camera views. Our framework uses
ideas from image-to-image translation and improves upon
work in 3D view synthesis to produce view-consistent pho-
torealistic renderings of input Minecraft worlds as shown in
Fig. 1. Although we demonstrate our results using Minecraft,
our method works with other 3D block world representations,
such as voxels. We chose Minecraft because it is a popular
platform available to a wide audience.
Our key contributions include:

• The novel task of producing view-consistent photore-
alistic renderings of user-created 3D semantic block
worlds, or world-to-world translation, a 3D extension
of image-to-image translation.

• A framework for training neural renderers in the ab-
sence of ground truth data. This is enabled by using
pseudo-ground truth images generated by a pretrained
image synthesis model (Section 3.1).

• A new neural rendering network architecture trained
with adversarial losses (Section 3.2), that extends recent
work in 2D and 3D neural rendering [20, 31, 37, 39,
45] to produce state-of-the-art results which can be
conditioned on a style image (Section 4).

2. Related Work
2D image-to-image translation. The GAN framework [16]
has enabled multiple methods to successfully map an image
from one domain to another with high fidelity, e.g., from
input segmentation maps to photorealistic images. This task
can be performed in the supervised setting [22, 26, 35, 50,
62, 73], where example pairs of corresponding images are
available, as well as the unsupervised setting [14, 21, 32,
33, 35, 54, 72], where only two sets of images are available.
Methods operating in the supervised setting use stronger
losses such as the L1 or perceptual loss [23], in conjunction
with the adversarial loss. As paired data is unavailable in the
unsupervised setting, works typically rely on a shared-latent
space assumption [32] or cycle-consistency losses [72]. For
a comprehensive overview of image-to-image translation
methods, please refer to the survey of Liu et al. [34].

Our problem setting naturally falls into the unsupervised
setting as we do not possess real-world images correspond-
ing to the Minecraft 3D world. To facilitate learning a view-
consistent mapping, we employ pseudo-ground truths during
training, which are predicted by a pretrained supervised
image-to-image translation method.

Pseudo-ground truths were first explored in prior work on
self-training, or bootstrap learning [38, 67]1. More recently,
this technique has been adopted in several unsupervised

1See https://ruder.io/semi-supervised/ for an overview.

https://www.planetminecraft.com/project/greenfield---new-life-size-city-project/
https://www.planetminecraft.com/project/greenfield---new-life-size-city-project/
https://www.grabcraft.com/minecraft/eiffel-tower-paris/towers
https://ruder.io/semi-supervised/


domain adaptation works [13, 27, 56, 61, 65, 70, 74]. They
use a deep learning model trained on the ‘source’ domain
to obtain predictions on the new ‘target’ domain, treat these
predictions as ground truth labels, or pseudo labels, and
finetune the deep learning model on such self-labeled data.

In our problem setting, we have segmentation maps ob-
tained from the Minecraft world but do not possess the cor-
responding real image. We use SPADE [50], a conditional
GAN model, trained for generating landscape images from
input segmentation maps to generate pseudo ground truth
images. This yields the pseudo pair: input Minecraft seg-
mentation mask and the corresponding pseudo ground truth
image. The pseudo pairs enable us to use stronger super-
vision such as L1, L2, and perceptual [23] losses in our
world-to-world translation framework, resulting in improved
output image quality. This idea of using pretrained GAN
models for generating training data has also been explored in
the very recent works of Pan et al. [48] and Zhang et al. [71],
which use a pretrained StyleGAN [24, 25] as a multi-view
data generator to train an inverse graphics model.

3D neural rendering. A number of works have explored
combining the strengths of the traditional graphics pipeline,
such as 3D-aware projection, with the synthesis capabilities
of neural networks to produce view-consistent outputs. By
introducing differentiable 3D projection and using trainable
layers that operate in the 3D and 2D feature space, several
recent methods [4, 18, 43, 44, 57, 63] are able to model the
geometry and appearance of 3D scenes from 2D images.
Some works have successfully combined neural rendering
with adversarial training [18, 43, 44, 45, 55], thereby remov-
ing the constraint of training images having to be posed and
from the same scene. However, the under-constrained nature
of the problem limited the application of these methods to
single objects, synthetic data, or small-scale simple scenes.
As shown later in Section 4, we find that adversarial training
alone is not enough to produce good results in our setting.
This is because our input scenes are larger and more complex,
the available training data is highly diverse, and there are
considerable gaps in the scene composition and camera pose
distribution between the block world and the real images.

Most recently, NeRF [39] demonstrated state-of-the-art
results in novel view synthesis by encoding the scene in the
weights of a neural network that produces the volume den-
sity and view-dependent radiance at every spatial location.
The remarkable synthesis ability of NeRF has inspired a
large number of follow-up works which have tried to im-
prove the output quality [31, 69], make it faster to train and
evaluate [30, 31, 42, 52, 60], extend it to deformable ob-
jects [15, 28, 49, 51, 64], account for lighting [9, 6, 37, 58]
and compositionality [17, 45, 47, 68], as well as add genera-
tive capabilities [11, 55, 45].

Most relevant to our work are NSVF [31], NeRF-W [37],
and GIRAFFE [45]. NSVF [31] reduces the computational

cost of NeRF by representing the scene as a set of voxel-
bounded implicit fields organized in a sparse voxel octree,
which is obtained by pruning an initially dense cuboid made
of voxels. NeRF-W [37] learns image-dependent appearance
embeddings allowing it to learn from unstructured photo
collections, and produce style-conditioned outputs. These
works on novel view synthesis learn the geometry and ap-
pearance of scenes given ground truth posed images. In
our setting, the problem is inverted — we are given coarse
voxel geometry and segmentation labels as input, without
any corresponding real images.

Similar to NSVF [31], we assign learnable features to
each corner of the voxels to encode geometry and appear-
ance. In contrast, we do not learn the 3D voxel structure of
the scene from scratch, but instead implicitly refine the pro-
vided coarse input geometry (e.g. shape and opacity of trees
represented by blocky voxels) during the course of training.
Prior work by Riegler et al. [53] also used a mesh obtained
by multi-view stereo as a coarse input geometry. Similar
to NeRF-W [37], we use a style-conditioned network. This
allows us to learn consistent geometry while accounting for
the view inconsistency of SPADE [50]. Like neural point-
based graphics [4] and GIRAFFE [45], we use differentiable
projection to obtain features for image pixels, and then use
a CNN to convert the 2D feature grid to an image. Like
GIRAFFE [45], we use an adversarial loss in training. We,
however, learn on large, complex scenes and produce higher-
resolution outputs (1024ˆ2048 original image size in Fig. 1,
v/s 64ˆ64 or 256ˆ256 pixels in GIRAFFE), in which case
adversarial loss alone fails to produce good results.

3. Neural Rendering of Minecraft Worlds
Our goal is to convert a scene represented by semantically-

labeled blocks (or voxels), such as the maps from Minecraft,
to a photorealistic 3D scene that can be consistently rendered
from arbitrary viewpoints (as shown in Fig. 1). In this paper,
we focus on landscape scenes that are orders of magnitude
larger than single objects or scenes typically used in the train-
ing and evaluation of previous neural rendering works. In
all of our experiments, we use voxel grids of 512ˆ512ˆ256
blocks (512ˆ512 blocks horizontally, 256 blocks tall ver-
tically). Given that each Minecraft block is considered to
have a size of 1 cubic meter [1], each scene covers an area
equivalent to 262,144 m2 (65 acres, or the size of 32 soccer
fields) in real life. At the same time, our model needs to
learn details that are much finer than a single block, such as
tree leaves, flowers, and grass, that too without supervision.
As the input voxels and their labels already define the coarse
geometry and semantic arrangement of the scene, it is nec-
essary to respect and incorporate this prior information into
the model. We first describe how we overcome the lack of
paired training data by using pseudo-ground truths. Then,
we present our novel sparse voxel-based neural renderer.
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Figure 2: Pseudo-ground truth generation. Left: We use a pretrained image-to-image translation model (SPADE [50]) to
convert projected segmentation maps to images. Right: Sample input segmentation maps showing different labels (grass, trees,
water, sand, sky) and SPADE outputs for different style codes. Note that some generated outputs can look unrealistic due to
domain gap of the blocky segmentations and sampled camera poses, with the real image data used to train SPADE. Our method
is designed to be robust to noise, varying styles, and inconsistencies present in these generated pseudo-ground truth images.

3.1. Generating pseudo-ground truth training data

The most straightforward way of training a neural ren-
dering model is to utilize ground truth images with known
camera poses. A simple L2 reconstruction loss is sufficient
to produce good results in this case [31, 37, 39, 46, 66].
However, in our setting, ground truth real images are simply
unavailable for user-generated block worlds from Minecraft.

An alternative route is to train our model in an unpaired,
unsupervised fashion like CycleGAN [72], or MUNIT [21].
This would use an adversarial loss and regularization terms to
translate Minecraft segmentations to real images. However,
as shown in the ablation studies in Section 4, this setting
does not produce good results, for both prior methods, and
neural renderers. This can be attributed to the large domain
gap between blocky Minecraft and the real world, as well as
the label distribution shift between worlds.

To bridge the domain gap between the voxel world and
our world, we supplement the training data with pseudo-
ground truth that is generated on-the-fly. For each training
iteration, we randomly sample camera poses from the up-
per hemisphere and randomly choose a focal length. We
then project the semantic labels of the voxels to the camera
view to obtain a 2D semantic segmentation mask. The seg-
mentation mask, as well as a randomly sampled style code,
is fed to a pretrained image-to-image translation network,
SPADE [50] in our case, to obtain a photorealistic pseudo-
ground truth image that has the same semantic layout as the
camera view, as shown in the left part of Fig. 2. This enables
us to apply reconstruction losses, such as L2, and the per-
ceptual loss [23], between the pseudo-ground truth and the
rendered output from the same camera view, in additional to
the adversarial loss. This significantly improves the result.

The generalizability of the SPADE model trained on large-
scale datasets, combined with its photorealistic generation
capability helps reduce both, the domain gap and the label
distribution mismatch. Sample pseudo-pairs are shown in

the right part of Fig. 2. While this provides effective super-
vision, it is not perfect. This can be seen especially in the
last two columns in the right part of Fig. 2. The blockiness
of Minecraft can produce unrealistic images with sharp ge-
ometry. Certain camera poses and style code combinations
can also produce images with artifacts. We thus have to be
careful to balance reconstruction and adversarial losses to
ensure successful training of the neural renderer.

3.2. Sparse voxel-based volumetric neural renderer

Voxel-bounded neural radiance fields. Let K be the num-
ber of occupied blocks in a Minecraft world, which can also
be represented by a sparse voxel grid with K non-empty
voxels given by V “ tV1, ..., VKu. Each voxel is assigned a
semantic label tl1, ..., lKu. We learn a neural radiance field
per voxel. The Minecraft world is then represented by the
union of voxel-bounded neural radiance fields given by

F pp, zq “

#

Fipp, zq, if p P Vi, i P t1, ¨ ¨ ¨ ,Ku
p0, 0q, otherwise

, (1)

where F is the radiance field of the whole scene and Fi is
the radiance field bounded by Vi. Querying a location in
the neural radiance field returns a feature vector (or color in
prior work [31, 37, 39]) and a density value. At the location
where a block does not exist, we have the null feature vector
0 and zero density 0. To model diversified appearance of
the same scene, e.g. day and night, the radiance fields are
conditioned on style code z.

The voxel-bounded neural radiance field Fi is given by

Fipp, zq “ Gθpgippq, li, zq “ pcpp, lppq, zq, σpp, lppqqq ,

where gippq is the location code at p and li ” lppq is a
short-hand for the label of the voxel that p belongs to. The
multi-layer perceptron (MLP) Gθ is used to predict the fea-
ture c, and volume density σ at the location p. We note that
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Figure 3: Overview of GANcraft. Given an input voxel world with segmentation labels, we first assign features to every
voxel corner. For arbitrarily sampled camera viewpoints, we obtain the trilinearly interpolated voxel features at the point of
ray-voxel intersections, process with an MLP, and blend the output features to obtain the image pixel features. These features
are fed to an image-space CNN renderer. Both the MLP and the CNN are conditioned on the style code of the pseudo-ground
truth for the chosen camera view. Our method is trained with an adversarial loss with real images, and a combination of
adversarial, pixel-wise, and VGG perceptual losses on the pseudo-ground truths. After training, we can render the world in a
photorealistic manner, controlling the style of the output images by conditioning on an input style code or image.

Gθ is shared amongst all voxels. Inspired by NeRF-W [37],
c additionally depends on the style code, while the density σ
does not. To obtain the location code, we first assign a learn-
able feature vector to each of the eight vertices of a voxel
Vi. The location code at p, gippq, is then derived through
trilinear interpolation. Here, we assume that each voxel has
a shape of 1ˆ1ˆ1, and the coordinate axes are aligned to the
voxel grid axes. Vertices and their feature vectors are shared
for adjacent voxels. This allows for a smooth transition of
features when crossing the voxel boundaries, preventing dis-
continuities in the output. We compute Fourier features from
gippq, similar to NSVF [31], and also append the voxel class
label. Our method can be interpreted as a generalization of
NSVF [31] to use a style and semantic label conditioning.

Neural sky dome. The sky is an indispensable part of pho-
torealistic landscape scenes. However, as it is physically
located much farther away from the other objects, it is ineffi-
cient to represent it with a layer of voxels. In GANcraft, we
assume that the sky is located infinitely far away (no paral-
lax). Thus, its appearance is only dependent on the viewing
direction. The same assumption is commonly used in com-
puter graphics techniques such as environment mapping [8].
We use an MLP Hφ, to map ray direction v to sky color, or
feature, csky ” Hφpv, zq, conditioned on style code z, This
representation can be viewed as covering the whole scene
with an infinitely large sky dome.

Volumetric rendering. Here, we describe how a scene rep-
resented by the above-mentioned neural radiance fields and
sky dome can be converted to 2D feature maps via volumet-
ric rendering. Under a perspective camera model, each pixel
in the image corresponds to a camera ray rptq “ o ` tv,
originating from the center of projection o and advances in
direction v. The ray travels through the radiance field while

accumulating features and transmittance,

Cpr, zq “

ż `8

0

T ptqσ
`

rptq, lprptqq
˘

c
`

rptq, lprptqq, z
˘

dt

` T p`8qcskypv, zq, (2)

where T ptq “ exp

ˆ

´

ż t

0

σprpsqqds

˙

. (3)

Cpr, zq denotes the accumulated feature of ray r, and T ptq
denotes the accumulated transmittance when the ray travels
a distance of t. As the radiance field is bounded by a finite
number of voxels, the ray will eventually exit the voxels and
hit the sky dome. We thus consider the sky dome as the
last data point on the ray, which is totally opaque. This is
realized by the last term in Eq. 2. The above integral can
be approximated using discrete samples and the quadrature
rule, a technique popularized by NeRF [39]. Please refer to
NeRF [39] or our supplementary for the full equations.

We use the stratified sampling technique from NSVF [31]
to randomly sample valid (voxel bounded) points along the
ray. To improve efficiency, we truncate the ray so that it will
stop after a certain accumulated distance through the valid
region is reached. We regularize the truncated rays to encour-
age their accumulated opacities to saturate before reaching
the maximum distance. We adopt a modified Bresenham
method [5] for sampling valid points, which has a very low
complexity of OpNq, where N is the longest dimension of
the voxel grid. Details are in the supplementary.

Hybrid neural rendering architecture. Prior works [31,
37, 39] directly produce images by accumulating colors us-
ing the volumetric rendering scheme described above instead
of accumulating features. Unlike them, we divide rendering
into two parts: 1) We perform volumetric rendering with an
MLP to produce a feature vector per pixel instead of an RGB
image, and 2) We employ a CNN to convert the per-pixel



feature map to a final RGB image of the same size. The
overall framework is shown in Fig. 3. We perform activa-
tion modulation [20, 50] conditioned on the input style code
for both the MLP and CNN. The individual networks are
described in detail in the supplementary.

Apart from improving the output image quality as shown
in Section 4, this two-stage design also helps reduce the
computational and memory footprint of rendering. The MLP
modeling the 3D radiance field is evaluated on a per-sample
basis, while the image-space CNN is only evaluated after
multiple samples along a ray are merged into a single pixel.
The number of samples to the MLP scales linearly with
the output height, width, and number of points sampled
per ray (24 in our case), while the size of the feature map
only depends on output height and width. However, unlike
MLPs that operate pre-blending, the image-space CNN is
not intrinsically view consistent. We thus use a shallow
CNN with a receptive field of only 9ˆ9 pixels to constrain
its scope to local manipulations. A similar idea of combining
volumetric rendering and image-space rendering has been
used in GIRAFFE [45]. Unlike us, they also rely on the
CNN to upsample a low-resolution 16ˆ16 feature map.

Losses and regularizers. We train our model with both re-
construction and adversarial losses. The reconstruction loss
is applied between the predicted images and the correspond-
ing pseudo-ground truth images. We use a combination of
the perceptual [23], L1, and L2 losses. For the GAN loss, we
treat the predicted images as ‘fake’, and both the real images,
and the pseudo-ground truth images as ‘real’. We use a dis-
criminator conditioned on the semantic segmentation maps,
based on Liu et al. [35] and Schönfeld et al. [54]. We use
the hinge loss [29] as the GAN training objective. Following
previous works on multimodal image synthesis [3, 21, 73],
we also include a style encoder which predicts the posterior
distribution of the style code given a pseudo-ground truth
image. The reconstruction loss, in conjunction with the style
encoder, makes it possible to control the appearance of the
output image with a style image.

As mentioned earlier, we truncate the ray during volu-
metric rendering. To avoid artifacts due to the truncation,
we apply an opacity regularization term on the truncated
ray, Lopacity “

ř

rPRtrunc
Toutprq. This discourages leftover

transmittance after a ray reaches the truncation distance.

4. Experiments

The previous section described how we obtain pseudo-
ground truths in the absence of paired Minecraft–real train-
ing data, and the architecture of our neural renderer. Here,
we validate our framework by comparing with prior work on
multiple diverse large Minecraft worlds.
Datasets. We collected a dataset of „1M landscape images
from the internet with a minimum side of at least 512 pixels.

For each image, we obtained 182-class COCO-Stuff [10]
segmentation labels by using DeepLabV2 [12, 41]. This
formed our training set of paired real segmentation maps
and images. We set aside 5000 images as a test set. We
generated 5 different Minecraft worlds of 512ˆ512ˆ256
blocks each. We sampled worlds with various compositions
of water, sand, forests, and snow, to show that our method
works correctly under significant label distribution shifts.

Baselines. We compare against the following, which are rep-
resentative methods under different data availability regimes.
• MUNIT [21]. This is an image-to-image translation

method trainable in the unpaired, or unsupervised set-
ting. Unlike CycleGAN [72] and UNIT [32], MUNIT
can learn multimodal translations. We learn to translate
Minecraft segmentation maps to real images.

• SPADE [50]. This is an image-to-image translation
method that is trained in the paired ground truth, or su-
pervised setting. We train this by translating real seg-
mentation maps to corresponding images and test it on
Minecraft segmentations.

• wc-vid2vid [36]. Unlike the above two methods, this can
generate a sequence of images that are view-consistent.
wc-vid2vid projects the pixels from previous frames to the
next frame to generate a guidance map. This serves as a
form of memory of the previously generated frames. This
method also requires paired ground truth data, as well as
the 3D point clouds for each output frame. We train this
to translate real segmentation maps to real images, while
using the block world voxel surfaces as the 3D geometry.

• NSVF-W [31, 37]. We combine the strengths of two
recent works on neural rendering, NSVF [31], and NeRF-
W [37], to create a strong baseline. NSVF represents
the world as voxel-bounded radiance fields, and can be
modified to accept an input voxel world, just like our
method. NeRF-W is able to learn from unstructured image
collections with variations in color, lighting, and occlu-
sions, making it well-suited for learning from our pseudo-
ground truths. Combining the style-conditioned MLP
generator from NeRF-W with the voxel-based input rep-
resentation of NSVF, we obtain NSVF-W. This resembles
the neural renderer used by us, with the omission of the
image-space CNN. As these methods also require paired
ground truth, we train NSVF-W using pseudo-ground
truths generated by the pretrained SPADE model.

MUNIT, SPADE, and wc-vid2vid use perceptual and adver-
sarial losses during training, while NSVF, NeRF-W, and thus
NSVF-W use the L2 loss. Details are in the supplementary.

Implementation details. We train our model at an output
resolution of 256ˆ256 pixels. Each model is trained on 8
NVIDIA V100 GPUs with 32GB of memory each. This
enables us to use a batch size of 8 with 24 points sampled
per camera ray. Each model is trained for 250k iterations,



Method FID Ó KID Ó

SPADE [50] 58.90 0.027

MUNIT [21] 78.42 0.047
NSVF-W [31, 37] 84.53 0.052
GANcraft (ours) 61.33 0.033

Table 2: Automated image quality metrics. We compare
baselines against GANcraft on all 5 block worlds. SPADE
sets the lower bound on FID and KID as it is a strong photo-
realistic image generator, although it is not view-consistent.
Our view-consistent method achieves values close to SPADE,
beating MUNIT and NSVF-W.

which takes approximately 4 days. All baselines are also
trained for an equivalent amount of time. Additional details
are available in the supplementary.

Evaluation metrics. We use both quantitative and qualita-
tive metrics to measure the quality of our outputs.
• Fréchet Inception Distance [19] (FID) and Kernel Incep-

tion Distance [7] (KID). We use FID and KID to measure
the distance between the distributions of the generated
and real images, using Inception-v3 [59]. We generate
1000 images for each of the 5 worlds from arbitrarily sam-
pled camera view points using different style codes, for
a total of 5000 images. We then generate outputs from
each method for the same pair of view points and style
code for a fair comparison. We use a held-out set of 5000
real landscape images to compute the metrics. For both
metrics, a lower value indicates better image quality.

• Human preference score. Using Amazon Mechanical
Turk (AMT), we perform a subjective visual test to gauge
the relative quality of generated videos with top-qualified
turkers. We ask turkers to choose 1) the more temporally
consistent video, and 2) the video with overall better real-
ism. For each of the two questions, a turker is shown two
videos synthesized by two different methods and asked
to choose the superior one according to the criteria. We
generate 64 videos per world, total of 320 per method,
and each comparison is evaluated by 3 workers.

Main results. Fig. 4 shows output videos generated by
different methods. Each row is a unique world, generated
using the same style-conditioning image for all methods. We
can observe that our outputs are more realistic and view-
consistent when compared to baselines. MUNIT [21] and
SPADE [50] demonstrate a lot of flickering as they generate
one image at a time, without any memory of past outputs.
Further, MUNIT also fails to learn the correct mapping of
segmentation labels to textures as it does not use paired su-
pervision. While wc-vid2vid [36] is more view-consistent,
it fails for large motions as it incrementally inpaints newly
explored parts of the world. NSVF-W [31, 37] and GAN-
craft are both inherently view-consistent due to their use of

Comparison Human preference
Consistency Ò Realism Ò

MUNIT [21] / GANcraft 30.1/69.9 37.5/62.5
SPADE [50] / GANcraft 29.7/70.3 37.2/62.8

wc-vid2vid [36] / GANcraft 47.0/53.0 16.2/83.8
NSVF-W [31, 37] / GANcraft 46.6/53.4 31.4/68.6

Table 3: Human preference scores. We compare videos
generated by different methods on all 5 block worlds. Users
chose GANcraft as more temporally consistent and realistic.

volumetric rendering. However, due to the lack of a CNN
renderer and the use of the L2 loss, NSVF-W produces dull
and unrealistic outputs with artifacts. The use of an adver-
sarial loss is key to ensuring vivid and realistic results, and
this is further reinforced in the ablations presented below.
Our method is also capable of generating higher resolution
outputs as shown in Fig. 1, by sampling more rays.

We sample novel camera views from each world and
compute the FID and KID against a set of held-out real
images. As seen in Table 2, our method achieves FID and
KID close to that of SPADE, which is a very strong image-
to-image translation method, while beating other baselines.
Note that wc-vid2vid uses SPADE to generate the output
for first camera view in a sequence and is thus ignored in
this comparison. Further, as summarized in Table 3, users
consistently preferred our method and chose its predictions
as the more view-consistent and realistic videos. More high-
resolution results and comparisons as well as some failure
cases are available in the supplementary.

Ablations. We train ablated versions of our full model on
one Minecraft world due to computational constraints. We
show example outputs from them in Fig. 5. Using no pseudo-
ground truth at all and training with just the GAN loss pro-
duces unrealistic outputs, similar to MUNIT [21]. Directly
producing images from volumetric rendering, without using
a CNN, results in a lack of fine detail. Compared to the
full model, skipping the GAN loss on real images produces
duller images, and skipping the GAN loss altogether pro-
duces duller, blurrier images resembling NSVF-W outputs.
Qualitative analysis is available in the supplementary.

5. Discussion
We introduced the novel task of world-to-world trans-

lation and proposed GANcraft, a method to convert block
worlds to realistic-looking worlds. We showed that pseudo-
ground truths generated by a 2D image-to-image translation
network provide effective means of supervision in the ab-
sence of real paired data. Our hybrid neural renderer trained
with both real landscape images and pseudo-ground truths,
and adversarial losses, outperformed strong baselines.

There still remain a few exciting avenues for improve-
ments, including learning a smoother geometry in spite of



MUNIT [21] SPADE [50] wc-vid2vid [36] NSVF-W [31, 37] GANcraft (ours)

Figure 4: Output video comparison. Each row is a unique world, and each column is a different method. For a given world,
all methods use the same style-conditioning image. GANcraft produces more view-consistent and more realistic outputs
compared to all baselines. Click any row to play video in web browser.

Full model No pseudo-ground truth No CNN No real images No GAN loss

Figure 5: Ablated model outputs. Using only the GAN loss with no pseudo-ground truths produces unrealistic images. Not
using a CNN produces outputs that lack detail and contain artifacts. Excluding the GAN loss on real images results in dull
colors, and no GAN loss at all produces dull and blurry outputs, when compared to the full model.

coarse input geometry, and using non-voxel inputs such as
meshes and point clouds. While our method is currently

trained on a per-world basis, we hope future work can enable
feed-forward generation on novel worlds.

https://nvlabs.github.io/GANcraft/videos/desert_2527_2.mp4
https://nvlabs.github.io/GANcraft/videos/survivalisland_2467_1.mp4
https://nvlabs.github.io/GANcraft/videos/landscapep2_0685_3.mp4
https://nvlabs.github.io/GANcraft/videos/s123456_0298_1.mp4
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GANcraft: Unsupervised 3D Neural Rendering of Minecraft Worlds
Supplementary Material

A. Supplementary video
Our project website is available at

https://nvlabs.github.io/GANcraft/. This
includes an overview of the method as well as additional
results.

We also provide a video, including more visual results
and discussion of our work. Specifically, it contains:

• Additional high-resolution video results rendered at
1024ˆ2048 pixels and 30 frames per second

• Style interpolation results
• Additional comparisons with baseline methods
• Illustration of the proposed approach.

Please make sure to check it out at
https://www.youtube.com/watch?v=1Hky092CGFQ.

B. Method details
Here, we provide additional details of our approach.

B.1. Numerical volumetric rendering

The integral in Equation 2 of the main paper can be ap-
proximated with discrete samples via quadrature [39]. As-
sume that we sample N ` 1 points at t1, ..., tN`1 along a
camera ray rptq “ o` tv. We define

δi “ ti`1 ´ ti,

t̂i “
ti`1 ` ti

2
,

σi “ σ
`

r
`

t̂i
˘

, l
`

r
`

t̂i
˘˘˘

,

ci “ c
`

r
`

t̂i
˘

, l
`

r
`

t̂i
˘˘

, z
˘

,

such that

Cprq «

#

N
ÿ

i“1

Tip1´ expp´σiδiqqci

+

` TN`1cskypv, zq,

where Ti “ exp

˜

´

i´1
ÿ

j“1

σjδj

¸

.

B.2. Point sampling algorithm

In this section, we describe the method we use to effi-
ciently sample points from the sparse voxel grid along a
camera ray. Instead of relying on rejection sampling (as in
Liu et al. [31]) to remove points that have not landed inside
any voxel, we first traverse the voxel grid along the ray to
obtain the entrance and exit points of each valid voxel that
the ray has gone through, and then sample points only on the
segments that are inside voxels.

For voxel grid traversal, We implement a 3D version of
Bresenham’s line algorithm [5], which has a very low com-
putational cost of OpNq, where N is the longest dimension
of the voxel grid. Its working principle is as follows: Starting
from the voxel position where the camera resides, for each
step, we traverse to the next voxel which is adjacent to the
current voxel by the face which the ray exits from.

B.3. Network Architecture

GANcraft contains 6 trainable neural networks. Here are
their descriptions and their respective network architectures:

Per-sample MLP. This is the MLP for representing the im-
plicit radiance field, in conjunction with the voxel features.
The network architecture is illustrated in Fig. 6. We condi-
tion the output feature on the style code via weight modula-
tion [25]. The detailed implementation of weight modulation
is shown in Fig. 10.

Neural sky dome. The sky is modeled with an MLP (Fig. 7)
which takes ray direction (represented as a normalized 3D
vector) input and produce the color feature for that ray. The
network is also conditional on the style feature.

Image space renderer. This is a CNN for converting feature
map to RGB image (Fig. 8). As discussed in the main paper,
we use very small kernel sizes to reduce the receptive field
in order to encourage view consistency. The network is
conditional on the style feature.

Style network. Following StyleGAN2 [25], we use an MLP
that is shared across all the style conditioning layers to con-
vert the input style code to an intermediate style feature. Its
architecture is shown in Fig. 9.

Style encoder. The style encoder is a CNN that predicts
the style code given an image. In conjunction with pseudo
ground truth and reconstruction loss, this allows GANcraft to
produce images that follows the style of a given image. Our
style encoder is taken from SPADE [50], which is a 6-layer
CNN followed by a linear layer and VAE reparameterization.
Please refer to the original paper for the details.

Label-conditional discriminator. The discriminator we
use is based on feature pyramid semantics-embedding
(FPSE) discriminator [35]. Its construction is shown in
Fig. 11. Compared to the patch discriminator used in
SPADE [50], the FPSE discriminator is more robust to the
distribution mismatch in the label map domain. A patch
discriminator which takes the concatenated image and la-
bel map as input sometimes lead to training collapse almost
immediately after the training starts.

https://nvlabs.github.io/GANcraft/
https://www.youtube.com/watch?v=1Hky092CGFQ
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Figure 10: Detailed structure of ModLinear layer used in the per-sample network (Figure 6). ‘@’ denotes matrix multiplication.
Shapes of intermediate tensors are denoted on the arrows. The batch dimension is omitted for clarity.
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Figure 11: The conditional discriminator used in GANcraft. ‘dot’ denotes dot product on the channel dimension. ‘Ó 2’ denotes
downsample by 2. ‘Ò 2’ denotes upsample by 2. We use bilinear interpolation for upsampling, and stride 2 convolution for
downsampling. For label map, we downsample it via nearest neighbor interpolation. We use spectral normalization [40] on all
the convolution layers in the discriminator.

B.4. Label Translation

There is significant difference between Minecraft voxel
labels, which we use as the starting point of GANcraft, and
COCO-Stuff [10] labels, which is the format the pretrained
DeepLabV2 model produces and the pretrained SPADE
model accepts. In Minecraft Java edition, there are 680
labels in total, mostly describing raw materials (dirt, sand,
log, water, etc.) useful for building objects. While in COCO-
Stuff, there are 182 higher level labels of common objects
such as mountain, tree, river, and sea. Due to the drastic
difference in the level of abstraction, it is very difficult to find
a one-to-one mapping between Minecraft label and COCO-
Stuff label. For example, the water material in Minecraft can
be mapped to either sea or river label in COCO-Stuff; the
tree material consists of both log and leaf label in COCO-

Stuff. We solve the labeling difference in two ways. For the
label-conditional discriminator, we introduce a new set of 12
classes with high level of abstraction: ignore, sky, tree, dirt,
flower, grass, gravel, water, rock, stone, sand, and snow. We
then classify every Minecraft and COCO-Stuff label into one
of the 12 classes, and use the translated semantic segmenta-
tion mask as the conditional input to the discriminator. For
generating pseudo-ground truth, however, we will have to
convert Minecraft labels to COCO-Stuff labels in order to be
recognized by the pretrained SPADE generator. We achieve
this by first translating the Minecraft labels to one of the 12
labels, and then map them to COCO-Stuff labels randomly,
with equal chance across all the candidate labels. Note that
we use the same mapping scheme within a segmentation
map. We are able to obtain good result from such a simple
measure, as the style encoder is able to explain away the



Figure 12: Bird’s-eye view of the 5 Minecraft worlds used. Each block is color-coded by its label (brown-sand, blue-water,
light green-grass, dark green-trees, white-snow, etc.). We use worlds with varying distributions of sand, forest, water, snow,
trees, grass, etc. The label distribution of each specific world is very different from that of a collection of real images, e.g.
the first world is ą50% sand, and the second is ą90% water. Our method works for all these worlds despite the domain gap,
indicating the robustness of our framework.

Figure 13: Outputs of the ablated model that does not use pseudo-ground truths. This model was trained only with a
GAN loss between the outputs and real images, and obtains low FID and KID values, as seen in Table 4. However, the output
images look unrealistic and do not learn the correct correspondence between input segmentation labels and realistic textures.

Figure 14: Blockiness in some outputs. Certain regions and objects appear blocky due to the underlying blocky geometry
that is very different from occurrences in the real world.

randomness in the mapping.

B.5. Voxel Preprocessing

Minecraft voxel world has a sea level of 62, below which
most of the voxels are not visible from above. It will be a
waste of memory if we still assign voxel features to those
invisible voxels. Thus we preprocess the voxel by removing
the interior voxels, leaving a 4 voxel thick thin shell. This
operation reduces the occupancy of a typical voxel world
from 28% to 3%. The effect of preprocessing can be seen
at the borders of the voxel worlds in Fig. 12. Note that the
preprocessing step is not only useful for Minecraft world. It

is applicable to any types of voxel grids.

C. Experiment details
C.1. Minecraft block worlds.

We use 5 different Minecraft worlds for our experiments.
An overview of these worlds is shown in Fig. 12. As can
be seen, the label distribution of each specific world is very
different from that of a collection of real images, e.g. the first
world is ą50% sand, and the second is ą90% water. Our
method works for all these worlds despite the domain gap,
indicating the robustness of our framework.



Figure 15: Incompatible styles. Certain combinations of
styles and worlds give unrealistic outputs, possibly as these
styles are outliers.

C.2. GANcraft settings

During training, we generate images at a resolution of
256ˆ256. We sample 24 points along each ray, and truncate
the rays to a maximum distance of 3 (distance traveled out-
side voxels doesn’t count). We use a learning rate of 1e-4
for the generator networks, and 4e-4 for the discriminator.
For voxel features, we use a higher learning rate of 5e-3.
We use a combination of GAN loss, L2 loss, L1 loss and
perceptual loss, with their weights being 1.0, 10.0, 1.0 and
10.0, respectively. For regularization terms, we use a weight
of 0.5 for the opacity regularization, and a weight of 0.05
for the KL divergence needed by the style encoder. We also
clip the per-sample feature c to a range of r´1, 1s before
blending to reduce the ambiguity between the opacity and
the scale of feature. For random camera pose sampling, we
sample two points that are slightly above ground, and use
one of the as the camera location and the other one as the
point that the camera looks at. We reject any camera pose
that produces a depth map with a mean depth below 2 or
that produces a segmentation mask with label entropy below
0.75. This guarantees that the segmentation mask along can
provide enough scene geometry hint to the SPADE generator
for generating a pseudo-ground truth that corresponds well
to the actual scene geometry.

During evaluation, we increase the sample count to 32
points per ray. On an NVIDIA Titan V, this takes approxi-
mately 10 seconds to render a 1024ˆ2048 frame.

C.3. Baseline settings

For fair comparison, the settings used in the NSVF-W
baseline largely resembles GANcraft except for the follow-
ing differences:

• Only L2 loss and KL divergence is used during training.
• The weight for KL divergence is reduced to 0.01 to

avoid handicapping the style encoder too much in the
absence of other reconstruction losses.

• The image space CNN renderer is removed, and the
per-sample MLP directly produces an RGB radiance

(clipped by a sigmoid function) instead of a feature.

D. Additional results

Method FID Ó KID Ó

Full model 78.79 0.043
No CNN 84.86 0.049
No real images 89.95 0.055
No GAN loss 104.58 0.073
No pseudo-ground truth 65.40 0.043

Table 4: Ablation comparison on automated image qual-
ity metrics (Ó indicates lower is better). We compare ablated
versions of our full method on a single block world.

D.1. Ablation study

Here, we present quantitative results for the ablated ver-
sions of our full model. Sample outputs from these ablations
were shown in Fig. 5 of the main paper. We trained all ab-
lations on one world only, due to computational constraints
(each model takes 4 days on 8 NVIDIA V100 GPUs).

The results of automated metric evaluation as shown in
Table 4. We computed the FID and KID values with 2000
images generated from random camera poses and 5000 held-
out real images. As expected, all ablated versions obtain
higher FID and KID scores indicating worse quality. An
exception is the model trained without any pseudo-ground
truth images, i.e. trained with GAN loss between outputs and
real images only. Surprisingly, it obtains a lower FID and
KID than our full model. However, when we visually inspect
the outputs, shown in Fig. 13, it is clear that the model fails to
learn a meaningful mapping from Minecraft segmentations
to real images. The model seems to have learned to produce
unrealistic images that optimize the metrics due to training
with the GAN loss. However, similar to MUNIT [21], the
outputs are both unrealistic and incorrectly map Minecraft
segmentation labels to real images.

We observed that our method can fail in two ways —
either producing blocky outputs or producing unrealistic out-
puts. In the input block world, all objects and regions are
made of blocks. Due to this coarse geometry, the method is
sometimes unable to learn realistic geometries in the trans-
lated world. As a result, boundaries can often appear jagged,
as shown in Fig. 14. Further, certain combinations of worlds
and style-conditioning images can produce unrealistic out-
puts as shown in Fig. 15. For example, a forest world paired
with a conditioning image of a red sunset can produce unre-
alistic, or overly dark outputs. As the style encoder is trained
exclusively with pseudo-ground truth images that have the
same label distribution as the rendered Minecraft images, it
has never encountered such combinations.


