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Abstract
Non-verbal vocalisations (NVVs) such as laughter are an im-
portant part of communication in social interactions and carry
important information about a speaker’s state or intention.
There remains no clear definition of NVVs and there is no
clearly defined protocol for transcribing or detecting NVVs. As
such, the standard approach has been to focus on detecting a
single NVV such as laughter and map all other NVVs to an
“other” class. In this paper we hypothesise that for this task
such an approach hurts performance, and that giving more in-
formation by using more classes is beneficial. To address this,
we present studies using sequence-to-sequence deep neural net-
works where we include multiple NVV classes rather than map-
ping them to “other” and allow more than one label per sam-
ple. We show that this approach yields better performance than
the standard approach on NVV detection. We also evaluate
the same model on laughter detection using frame-based and
utterance-based metrics and show that the proposed approach
yields state-of-the-art performance on the ICSI corpus.
Index Terms: computational paralinguistics, non-verbal vocal-
isation detection, laughter detection, multi-label training.

1. Introduction
As well as speech, human conversation comprises non-verbal
vocalisations such as laughter, fillers, sneezes, and breaths.
NVVs carry information about a speaker’s physiological state,
emotional state or even their intentions, and can be charac-
terised by any combination of vocalisation, facial expression or
body movement. While we acknowledge that expressions and
body movements are an important part of human communica-
tion, our focus in this paper is exclusively on vocalisations.

A system to detect NVVs has a wide range of potential
applications, for example, in security [1] and healthcare [2],
including recent work pertaining to COVID-19 detection and
care [3]. NVVs are commonly present in spontaneous conver-
sational speech as opposed to perfectly read speech [4]. For this
reason, NVV detection is an important factor in tasks dealing
with spontaneous speech, such as in automatic speech recog-
nition (ASR) systems to reduce the number of errors [5], and
emotion recognition systems where it can be used as an addi-
tional feature [6].

There remains no clear definition of NVVs, nor are there
standard protocols for transcription and annotation [4]. Thus
one of the major challenges of NVV detection is that it is almost
impossible to establish an exhaustive list covering all possible
vocalisations. However, to use supervised learning, classifiers
such as neural networks need a list of classes in order to be
trained so an approach to incorporate this data into the train-
ing set must be selected. The standard approach is to aggregate

all non-relevant classes into a single class [7]. For example, in
the case of laughter detection, the “laughter” class comprises
all segments labelled as “laughter”, while the “non-laughter”
class comprises all other segments, which results in a very het-
erogeneous collection of sounds, such as speech, sneezes and
whistles.

We hypothesise that this approach can hurt the training of
the model. Our intuition is that the model learns each class by
extracting relevant patterns from the input: when learning the
“other” class, the model will see lots of very different patterns
which may cause confusion. We argue that using all available
information instead of collapsing classes will improve perfor-
mance.

In this paper, we present a study on the ICSI meeting cor-
pus [8] where we use all available classes during model train-
ing and evaluate on both binary (“laughter”/“non-laughter”) and
multi-class (NVV) tasks. More specifically, we investigate two
training approaches: multi-class, where the model is trained on
an set of classes using the standard cross-entropy loss function,
and multi-label, which consists of using a loss function com-
posed of a sum of binary classifiers, allowing the model to out-
put more than one label per frame. We also investigate using
a sequence-to-sequence (Seq2Seq) model, where the input is
a sequence of feature frames and the output is a sequence of
labels. Lastly, we propose to use utterance-based metrics bor-
rowed from the sound event detection literature [9] to measure
boundary placement correctness as well as the rate of insertions,
deletions and substitutions rather than evaluating using frame-
based metrics only.

Firstly, for NVV detection we show that the multi-class
and multi-label approaches improve performance compared to
a frame-based baseline. We then present a study on laugh-
ter detection, where we compare to the literature and a model
trained using the standard “laughter”/“non-laughter” approach
and show that the proposed approaches yield state-of-the-art
performance. In both tasks, multi-label approach outperforms
the multi-class approach. To summarise, the contributions of
this paper are as follows:

• We show that using multi-class and multi-label training
improve performance for laughter and NVV detection.

• We achieve state-of-the-art performance for laughter de-
tection on the ICSI meeting corpus using Seq2Seq mod-
els.

• We introduce a new baseline for NVV detection.
The remainder of the paper is organised as follows: a lit-

erature review is first presented in Section 2; the methodology
is then described in Section 3. Section 4 presents the experi-
mental setup; Section 5 discusses the results of the studies; and
Section 6 concludes the paper.
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2. Related Work
2.1. Non-verbal vocalisation detection

Previous works on NVV detection usually focus on one NVV
and frame it as a binary classification problem. This has
shown promising results for breath [10, 11]; cough [12] and
scream [13] detection. As laughter is the most frequently an-
notated NVV class [4], laughter detection comprises a large
part of NVV detection research. Early work in this field con-
centrated on detecting the presence of laughter in fixed seg-
ments of audio with support-vector machines (SVM) [14] and
Gaussian mixture models (GMM) [15, 16]. [17] took a frame-
level binary classification approach to the same problem, us-
ing multilayer perceptron (MLP) models, the results of which
were later improved upon with the use of a hybrid MLP/hidden
Markov model using posteriors [7]. More recent work has con-
tinued with a frame-level approach using deep rectifier neural
networks [18] and long short-term memory (LSTM) [2].

In addition to binary classifiers, multi-class classifiers have
been implemented using 3 [19, 20], 4 [21, 22], and 7 [5] classes,
all of which include the presence of an “other” class. Some of
these classifiers also made use of GMMs and SVMs [20], while
others have employed multivariate adaptive regression splines
(MARS) [22].

2.2. Multi-label training

Datasets with multiple labels per sample are common in many
fields such as image recognition [23], protein classification [24]
and document classification [25]. Three traditional approaches
to classifying these datasets discussed in [26] include: discard-
ing classes; considering any combination of classes a unique
class; and training one independent binary classifier for each
class. Using independent classifiers does not require discarding
any data or lead to additional problems of data sparsity; how-
ever, these models do not take advantage of class correlations,
which [27] addressed with the use of classifier chains.

More recent approaches have used deep neural networks
(DNNs) trained in an end-to-end manner to encode class de-
pendencies such as the CNN-LSTM model in [28]. Although
multi-label loss functions usually treat each class prediction as
independent, [29] explained that the shared hidden layers of
the model allow for class dependencies to be represented in the
model parameters. More explicit modelling of class dependen-
cies in DNNs has also been explored in [30].

3. Methodology
The task of non-verbal vocalisation detection has no clear def-
inition or standard annotation protocol [4], hence defining the
set of classes is non-trivial. In order to use supervised learning
on this task, a set of classes must first be defined. This step is
often overlooked in the literature so in this section we formalise
it and propose different approaches towards incorporating NVV
annotations into model training.

3.1. Training approaches

Let’s assume that we have an annotated dataset D, where the
annotation ya belongs to a set of classes ya ∈ Ca. This set has
Na different classes that can overlap (i.e. there is possibly more
than one label per sample). We denote this set the annotation
set. Let’s then assume that we want to perform a task T , which
consists of detecting another set of classes CT , composed ofNT
classes, which we denote the task set. We finally assume that

NT ≤ Na and that a mapping function fmap(·) exists, which
can map every class from the annotation set Ca to the task set
CT . The question is then: how can we use the mapping function
to prepare the training set with CT , so models can be trained to
perform the task T ?

The standard approach to solve this problem consists of
mapping all classes ya before training, i.e. apply the mapping
function: yT = fmap(ya). Hence, the dataset is now labelled
with yT ∈ CT and supervised training can be used. The most
commonly used mapping function is the binary function: it out-
puts two classes, “in-class” and “out-of-class”. For example, as
in the laughter detection task in [17], the “laughter” class is pre-
served while the “speech” class and all other non-verbal vocali-
sations are mapped to “non-laughter”. Other mapping functions
are sometimes used, as in [21] where the task set is composed
of “laughter”, “filler”, “speech” and “silence”.

In this study, we hypothesise that combining classes in this
way hurts model performance in the case of NVV detection.
Intuitively, one may assume that grouping some classes in the
dataset into an “other” class would help the model ignore un-
related information; however, we propose that the task of mod-
elling “other” is actually extremely difficult because it is com-
prised of a very diverse collection of sounds. We suggest that
using a multi-class training approach and providing the model
with a more granular set of classes will improve its performance
at NVV detection. Also, inspired by the knowledge that NVVs
often co-occur we explore using a multi-label training proce-
dure to remove the assumption of one label prediction per sam-
ple.

3.1.1. Multi-class training

In this approach, we use the annotation set Ca for training and
apply the mapping function only at inference time. For training,
we assume that there is only one class prediction per sample so
that the model can be trained using a softmax layer at the out-
put of the model and the standard multi-class cross-entropy cri-
terion. At inference time, the standard argmax operation can
be applied on the output of model, which will give a predicted
class ŷa ∈ Ca. The mapping function is then used at this stage
to obtain the prediction for the task: ŷT = fmap(ŷa).

3.1.2. Multi-label training

This approach is similar to the previous approach, as the map-
ping function is only applied at inference time. The main dif-
ference is that we relax the hypothesis that each sample must
have only one class. To achieve this, the standard cross-entropy
loss function cannot be used, so instead we use a loss function
which is the sum of binary logistic regressions:

L =

N∑
c=1

log(1 + e−yc·fc(x)) (1)

where N denotes the number of classes, yc ∈ {−1, 1} denotes
the presence or absence of class c and fc(x) is the output of the
model for class c. During inference, a sigmoid can be used to
obtain the probability p(c|x) for each class c from the output of
the model f(x):

p(c|x) = 1

1 + e−fc(x)
(2)

To be able to evaluate a model trained using this approach, we
need to compare it to binary and multi-class approaches, which
can only output one class per frame. Hence, methods need to
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be defined in order to obtain a single class per frame ŷ from
the output probabilities p(c|x). The proposed methods are the
following:

1. Binary classification: the decision is made by looking
only at the relevant class probability and applying a
threshold: if p(c1|x) > τ =⇒ ŷa = c1, ŷa =
c2 otherwise. In this paper, we used τ = 0.5.

2. Multi-class classification: the decision is made by se-
lecting the class with the highest probability: ŷa =
argmax

c
(p(c|x))

The class prediction for the task can then be derived as before:
ŷT = fmap(ŷa)

3.2. Sequence-to-Sequence Models

As with other speech-related tasks, NVV detection can be con-
sidered a sequence problem. The traditional approach consists
of separating the problem into two steps: the acoustic model,
which predicts a class from a sample with context, and the se-
quence model, which yields a class prediction sequence based
on the acoustic model outputs. Seq2Seq models refer to a fam-
ily of neural networks able to take a sequence of samples as
input and able to output an arbitrary length sequence of predic-
tions. In this approach, the acoustic model and the sequence
model are learned jointly by the same neural networks. These
models clearly outperform traditional models in speech-based
tasks such as automatic speech recognition [31, 32], speech
emotion recognition [33] and voice conversion [34]. However
in non-verbal vocalisation, the literature still used traditional ap-
proaches (see [17, 7] for example).

In this paper, the Seq2seq model used takes feature frame
sequences of arbitrary length L as input and outputs L labels,
i.e. one label per input frame, where the label belongs to ei-
ther the annotation set or the task set as presented above. The
architecture is composed of Nl bidirectional long short-term
memory (BLSTM) layers with Nhu hidden units, followed by
several feed-forward layers with a rectified linear unit (ReLU)
non-linearity.

4. Experimental setup
4.1. Dataset

The ICSI meeting corpus [8] is composed of 75 meeting record-
ings, where each participant is recorded separately using a
close-talking microphone. The corpus provides detailed hand-
labelled annotations, which contain the orthographic transcrip-
tion as well as non-lexical annotations separated into two cate-
gories: “vocal” containing mainly non-verbal vocalisations and
“non-vocal”, which contains mostly noise.

In this study, in line with previous works [17, 7], we trained
and tested on the ‘Bmr’ subset of the ICSI meeting corpus: the
first 21 meetings for training, the next 5 for validation and the
last 3 for testing. Also in line with the previous studies, we dis-
carded the segments where speech and non-verbal vocalisations
are used together, as there is no timestamp to separate them, and
we discarded silence between annotated segments.

This corpus was created with an unbounded set of possible
annotations for non-verbal vocalisations, therefore there was no
viable annotation set “out-of-the-box”. To obtain a usable anno-
tation set, while keeping as many classes as possible, we man-
ually included all annotations which matched any of the classes

in Table 1, while discarding any labels that did not match1.
Note also that while there were some instances of class co-
occurrences, where two or more NVVs occur simultaneously,
we removed these so as to ensure all models were trained on the
same set of data. The resulting dataset is composed of 82,959
utterances, with an average duration of 2.7 sec. Regarding the
label distribution for the multi-class and multi-label training ap-
proaches: “speech” is the most represented class as expected
(91%). The most represented NVV classes are “laugh” (5.7%)
and “breath” (2.2%). All other classes are below 1%.

Table 1: The annotation set used in this paper.

Classes

speech, laugh, breath, sniff, mouth, cough, whistle,
sip, click, blowing nose, sneeze, squeak, sigh, swallow,
yawn, clear throat, closure, hiccup, gasp, tongue taps.

4.2. Baseline

We use a simple fully-connected neural network as a baseline.
It is composed of Nl feed-forward layers of Nhu hidden units.
Each feed-forward layer is followed by a ReLU non-linearity.
Similarly to previous works [17], this model is trained frame-
by-frame, where each frame is given as input to the model with
some left and right context. In this paper we used a context
of 37 frames as in [17]. At inference time, each frame of the
sequence is given one after another to the model to obtain the
sequence of prediction.

4.3. Feature and model hyper-parameters

We use log Mel filterbank coefficients as input features. These
features consist of 40 coefficients computed on a 25ms win-
dow with a 10ms shift and no speed or acceleration coefficients.
Features are normalised to zero-mean and unit variance by ut-
terance.

The BLSTM architecture has 2 BLSTM layers of 256 hid-
den units, the output is composed of 2 feed-forward layers of
2048 hidden units. The baseline architecture has 3 layers of
1024 hidden units. The neural networks were implemented in
PyTorch [35] and trained using the fastai library [36]. We
use the “1cycle” learning rate policy introduced in [37] with a
maximum learning rate of 10−3.

4.4. Metrics

We use two different kinds of metrics in this study: frame-based
and utterance-based. The frame-based category aggregates indi-
vidual frame-level statistics, which can be misleading when the
detection task involves events spanning more than one frame
and the start and end times have a significant impact. For this
reason, we also use utterance-based metrics.

4.4.1. Frame-based metrics

We use two frame-based metrics in this paper: (1) the frame ac-
curacy (FA), which measures the amount of correctly predicted
frames across all classes; and (2) the equal error rate (EER),
which is defined as the point where the false negative rate is
equal to the false positive rate. This metric can only be used for
binary tasks.

1The scripts are available at https://github.com/
SpeechGraphics/NVV-laughter-multilabel

2508



4.4.2. Utterance-based metrics

Instead of considering frames only as presented above,
utterance-based metrics consider the whole utterance and aim
at evaluating the position of the events in the sequence. To this
aim, several aspects must be taken into account such as: the
correctness of the starting and ending time of the event and the
number of insertions, substitutions and deletions. In this paper,
we use the sed eval toolbox2, which introduces event-based
metrics for sound event detection [9]. The goal of these metrics
is to evaluate the position of sound events in an utterance and is
well-suited to NVV detection. In this study, we use two metrics:

• F-1 score: for each class, an event is considered as a true
positive if the start and end boundaries are close to the
ground truth within a given time threshold. In this study
we use 50ms.

• Error Rate (ER): Similar to the Word Error Rate (WER)
used in ASR, this metric is computed as the number
of insertions, deletions and substitutions divided by the
number of events in the ground-truth. Hence, it can
easily go above 100% if there are more insertions than
events in an utterance.

5. Results
In this section, we present the results of the study. We train two
models using the approaches described in Section 3: one using
the multi-class approach and the other using the multi-label ap-
proach. They both use the annotation set presented in Table 1.
We use these two models for both experiments presented in this
section.

5.1. Non-verbal vocalisation detection

In this experiment, we evaluate the two models and compare
them with the baseline. Table 2 presents the results using the
metrics introduced in Section 4.4.

Table 2: Performance on NVV detection using the ICSI test set.

System FA [%] F-1 [%] ER [%]

Baseline 95.2 15.2 192.3
Seq2Seq, multi-class 97.2 79.0 41.2
Seq2Seq, multi-label 97.4 79.9 39.8

We can see that the two Seq2Seq models outperform the
baseline. The frame accuracy is quite close for all three systems,
its very high value can be explained by the label distribution,
as most of the frames are labeled “speech” (see Section 4.1).
The utterance-based metrics show a clear difference: the base-
line only achieves a 15% F-1 score and more than 100% error
rate. This is expected, as the baseline does not have a sequence
model to help smooth its output. This clearly shows that simply
using the frame accuracy is not sufficient to evaluate a system
for this task. It is also worth noting that the multi-label approach
slightly outperforms the multi-class approach.

5.2. Laughter detection

In this experiment, we focus on the task of laughter detection,
where the task set is binary: “laughter” or “non-laughter”. We

2https://tut-arg.github.io/sed_eval/index.
html

compare the two models with a model that has the same ar-
chitecture but is trained on the task set directly as in [7]. We
also compare them with the literature. Table 3 presents the re-
sults. On the frame-level EER, it clearly shows that the Seq2Seq
models outperform the literature, yielding a new state-of-the-art
result for this task. Also, the multi-class approach outperforms
the binary approach, and the multi-label approach outperforms
both, showing that training with multiple classes and then map-
ping to the binary “laughter” or “non-laughter” at inference time
helps for this task.

Table 3: Performance on laughter detection using the ICSI test
set.

System EER [%] F-1 [%] ER [%]

MLP [17] 8.15 na na
MLP MF [7] 5.4 na na

Seq2Seq, binary 2.04 68.6 62.8
Seq2Seq, multi-class 1.84 78.3 45.6
Seq2Seq, multi-label 1.58 79.3 42.7

5.3. Discussion

These results support our hypothesis: training on more classes,
rather than mapping to a smaller set of classes improves model
performance for the task of NVV detection. This is in agree-
ment with our assertion that mapping before training and in-
cluding an “other” class leads to more ambiguity, making it dif-
ficult to model.

The fact that the multi-label approach seems to bring an
improvement over the multi-class approach is promising. The
multi-label approach can be seen as generalisation of the multi-
class approach and brings the natural benefit of being able to
model data with class co-occurrences. With regards to the cause
of this improvement, a possible explanation could be due to
ambiguous boundary placement between NVVs or unannotated
NVV co-occurrence; however, further analysis is required. This
will be part of our future work along with analysing in more de-
tail the performance of the NVV detection models, especially
focusing on the under-represented classes. We will also study
the effect of the multi-label loss function on training.

6. Conclusions
In this paper, we presented the hypothesis that training with
more classes improves performance for non-verbal vocalisation
and laughter detection. We proposed two training approaches:
(1) multi-class training, where the mapping from the annota-
tion set to the task set is performed at inference time, and (2)
the multi-label approach, which used a similar mapping strat-
egy while additionally being able to predict more than one class
per frame. We showed that both approaches outperform the
standard approach on non-verbal vocalisation and laughter de-
tection, and that the multi-label approach yields better perfor-
mance than the multi-class approach. Finally, we showed that
using utterance-based metrics for evaluation gives a better pic-
ture of the performance of the models, highlighting the benefits
of the sequence-to-sequence approach. For future work, we will
focus on a more detailed analysis of the multi-label approach,
especially on data with label co-occurrences.
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