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Fig. 1. We present a learning-based method to augment a subspace deformable simulation with contact-driven deformation detail. We learn contact
deformations in a contact-centric manner, which allows us to significantly reduce the sampling of configurations of the deformable object, and subsequently
learn highly complex deformations. For this real-time simulation of the MANO model [Romero et al. 2017] with dynamics, we used just one pose of the hand
for training. Notice the accurate high-resolution deformations due to contact with a rigid object, highlighted in the zoom-ins.

We propose a novel method to machine-learn highly detailed, nonlinear
contact deformations for real-time dynamic simulation. We depart from
previous deformation-learning strategies, and model contact deformations
in a contact-centric manner. This strategy shows excellent generalization
with respect to the object’s configuration space, and it allows for simple and
accurate learning. We complement the contact-centric learning strategy with
two additional key ingredients: learning a continuous vector field of contact
deformations, instead of a discrete approximation; and sparsifying the map-
ping between the contact configuration and contact deformations. These two
ingredients further contribute to the accuracy, efficiency, and generalization
of the method. We integrate our learning-based contact deformation model
with subspace dynamics, showing real-time dynamic simulations with fine
contact deformation detail.
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1 INTRODUCTION
The simulation of contact and deformations has drawn great interest
in computer graphics, as it serves to bring to life computer-generated
models of humans and their surrounding objects [McAdams et al.
2011; Smith et al. 2018; Terzopoulos et al. 1987]. However, one of
the remaining challenges in the field is to simulate high-resolution
contact at interactive rates, e.g., for virtual reality applications.

In our work, we look at leveraging machine-learning methodolo-
gies to model contact-driven deformations, inspired by their success
in modeling self-driven deformations [Pons-Moll et al. 2015; Santeste-
ban et al. 2019; Song et al. 2020], i.e., deformations that emerge as a
function of the object’s own motion. These methods employ a sub-
space representation of the deformable object, and then learn rich
nonlinear deformations as a function of the subspace state. Some
works have already attempted to model contact deformations using
machine-learning approaches, but they either model only smooth
global contact response [Holden et al. 2019], or show very limited
3D interactions [Romero et al. 2021].

We hypothesize that there is a fundamental limitation in previous
deformation learning strategies. Deformations are modeled in an
object-centric manner, which is an excellent choice for self-driven
deformations, as they are smooth with respect to the object’s sub-
space state, and then machine learning achieves good generalization
even from sparse data. However, contact-driven deformations are
not smooth with respect to the object’s state; therefore, machine-
learning these deformations would require dense sampling of the
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object’s subspace state. This is hard, as the configuration space may
be large and difficult to cover.
We depart from previous deformation-learning strategies, and

propose a contact-centric strategy to learn contact-driven deforma-
tions. This is also the intuition behind sculpting brushes in digital
sculpting [Ferley et al. 1999], and similar to the learning of skele-
tal deformations in local body-part coordinates [Deng et al. 2020].
We demonstrate that our contact-centric approach shows excellent
generalization with respect to the object’s subspace state (down
to just 8 training poses for a challenging ‘duck’ example with an
87-dimensional subspace state, or 1 pose for the ‘hand’ example in
the teaser figure). Our novel method, presented in Section 3, gathers
three main components:

(1) As outlined above, wemodel contact deformations in a contact-
centric manner, i.e., on a local reference of the collider. We observe
that contact deformations are smoother when modeled in a contact-
centric manner, and this contributes to better generalization, and
easier and more accurate learning.
(2) We regard contact deformations as a continuous vector field.

Instead of learning a discrete approximation, we learn the con-
tinuous field directly, inspired by recent work on implicit surface
modeling [Xie et al. 2021]. Learning the contact deformation field
generalizes continuity and differentiability to unseen configurations.
(3) We sparsify the mapping between the contact configuration

and the resulting contact deformations. In this way, we leverage the
locality of contact deformations, and we learn them effectively from
sparse data.
In Section 4, we describe the neural-network approximation of

our contact deformation model. We also discuss the efficient gen-
eration of training data. In Section 5, we discuss the simulation
of dynamic deformations using our learning-based contact defor-
mation model. We augment a dynamic subspace deformation with
quasi-static contact-driven detail that is expressed in the same sub-
space, allowing simulations that are both fast and highly detailed.
We have applied our method to real-time dynamic simulations

of different deformable objects. We show 2D and 3D subspace sim-
ulations generated with the bounded generalized biharmonic co-
ordinates [Wang et al. 2015], and 3D simulations of the MANO
hand model [Romero et al. 2017]. We have augmented these dy-
namic subspace deformations with rich and highly-detailed contact
deformations, all in real time. Examples and code are available at
http://mslab.es/projects/ContactCentricLearning/ to aid in the re-
production of our work.

2 RELATED WORK

2.1 Learning-Based Deformation
Nowadays the classic approach to implement deformable 3D shapes
is through linear blend skinning (LBS) [Jacobson et al. 2014;Magnenat-
Thalmann et al. 1988], where an underlying skeleton is used to pa-
rameterize the pose of an articulated object, and linear blending of
individual bone transformations deforms the shape surface. On top
of this, it is common to use a pose-space deformation (PSD) [Lewis
et al. 2000] method to mitigate well-known LBS artifacts. PSD adds
pose-dependant correctives to the template mesh such that the
posed mesh does not exhibit unnatural deformations.

Many works have been proposed to extend PSD in multiple
ways. Among those, closest to our work are the methods that learn
the pose-dependant correctives from data. For full-body humans,
SMPL [Loper et al. 2015] learns pose and shape correctives from
a large dataset of 4D static scans. Subsequent works have lever-
aged the learning capabilities of neural networks to extend SMPL to
model soft-tissue dynamic deformations [Casas and Otaduy 2018;
Pons-Moll et al. 2015; Santesteban et al. 2020]. Similarly, Bailey et
al. [2018] use multiple neural networks to approximate the rig’s
nonlinear deformation components. Some works have also learned
correctives for modeling specific body parts, such as faces [Song
et al. 2020] or hands [Romero et al. 2017]. Beyond human bodies,
garment deformations also have been learned from simulations,
using shape correctives [Ma et al. 2020; Patel et al. 2020; Pons-Moll
et al. 2017; Santesteban et al. 2019] or even neural features [Zhang
et al. 2021].

Despite the realism of the deformations showcased by these meth-
ods, due to their self-driven deformation strategy (i.e., deformations
depend only on skeletal pose or motion), they are unable to model
contact. Our work also stems from the idea of adding learned cor-
rections, but we bring new ingredients to model deformations due
to external interactions: a contact-centric representation and a con-
tinuous deformation field.

2.2 Subspace and Contact Simulation
We add learning-based contact deformations to subspace dynamic
simulations; therefore, we look at how others have designed sub-
space simulations for deformable objects and how they handled
contact.

Model order reduction assumes that a high-resolution deformable
object is given, and it finds a low-dimensional subspace that repre-
sents accurately the range of deformations of the object [Sifakis and
Barbic 2012]. Modal analysis finds a good subspace based on the
mechanical properties of the obejct [Pentland and Williams 1989],
and principal component analysis does it based on deformation
examples [Krysl et al. 2001]. Modal derivatives can improve the
basic linear subspace of these two approaches [Barbič and James
2005], while autoencoders can find a latent nonlinear subspace from
data [Fulton et al. 2019]. Recently, Shen et al. [2021] improved the
differentiability of deep autoencoders for their use in deformable
simulation, and Lee and Carlberg [2021] showed how to enforce
physical conservation laws in the learned subspaces. Other model-
order reduction approaches can work with artist-driven definitions
of subspaces, such as sparse frames [Brandt et al. 2018; Gilles et al.
2011], sparse handles [Wang et al. 2015], or animation rigs [Hahn
et al. 2012]. The recent approach of Lan et al. [2020] uses the object’s
medial axis to find an expressive geometry-motivated subspace. Fi-
nally, some authors have looked at complementing artist-defined
subspaces with model-order reduction to augment them with fast
dynamics. Some examples include pose-based subspaces [Hahn et al.
2014; Xu and Barbič 2016], local skinned deformations [Tapia et al.
2021], or domain decomposition [Barbič and Zhao 2011; Kim and
James 2011; Wu et al. 2015].

A common issue with model order reduction is that contact de-
formations are not resolved in high detail. The variety of contact
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deformations is too large to be captured by the subspace basis,
and the resulting simulations appear overly smooth. Some works
have addressed this limitation, enriching the subspace with a lo-
cal basis [Harmon and Zorin 2013] or with a local submesh [Teng
et al. 2015]. This last work supports more general deformations
than ours, but it suffers a high performance drop as the contact
influence grows (they report frame rates below 1 fps). Our method
maintains a stable high frame rate (tens of fps), making it suitable
for real-time interaction. Romero et al. [2021] combine learning
with model order reduction to produce contact-driven deformations.
Their method succeeds to produce detailed deformations, but it re-
quires dense sampling of the subspace of the deformable object. Our
contact-centric method overcomes this limitation and generalizes
well under extremely sparse sampling of the subspace, making it
suitable for more complex 3D interactions. In Section 6 we discuss
comparisons to the method of Romero et al., which fails to general-
ize under sparse data. Holden et al. [2019] use machine learning to
model the dynamic update of subspace deformable objects under
external contact. However, their approach cannot produce detailed
contact deformations, as the deformable object’s representation is
limited to a linear subspace learned from deformation examples.

2.3 Learning-Based Fields
Our contact-centric approach takes inspiration from the recent trend
of learning implicit representations to encode 3D shapes. Initial
works learn to approximate the surface of 3D meshes by predicting
a binary occupancy of arbitrary 3D points [Chen and Zhang 2019;
Mescheder et al. 2019]. Since fully-connected neural networks are
used, the learned representation is continuous, memory-efficient,
and easily differentiable, which brings many benefits in simulation,
computer vision, and geometry processing frameworks. For example,
these representations enable differentiable inside/outside queries,
which are tricky to implement with traditional representations such
as polygonal meshes. Follow-up research [Atzmon and Lipman 2020;
Chen and Zhang 2019; Park et al. 2019] demonstrated that neural
networks are also capable of learning distance to surface, which is
also a fundamental building block for many methods in Computer
Graphics. Such learning-based encoding, often referred to as implicit
neural representations or neural distance fields [Chibane et al. 2020],
has the key benefit of not being bounded by an explicit discretization
of the shape surface, which is a fundamental feature for our method.
To train these representations, existing methods often require

direct 3D supervision in form of a known or pre-computed implicit
representation of the target shape [Chen and Zhang 2019; Park et al.
2019]. Interestingly, more recent methods are able to train directly
from raw point clouds (i.e., without supervision at the zero level
set) [Atzmon and Lipman 2020; Gropp et al. 2020] or open surfaces
[Chibane et al. 2020], something that is not possible with traditional
representations of signed distance fields (SDF).
Beyond rigid surfaces, the advantages that learned implicit rep-

resentations bring have been leveraged to model more complex
objects, such as articulated shapes. Deng et al. [2020] model an
articulated human body using a piecewise implicit representation.
Subsequent works learn fully-parametric body models [Alldieck
et al. 2021; Mihajlovic et al. 2021], hands [Karunratanakul et al.
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Fig. 2. When a collider 𝑍 touches a deformable object 𝑋 , it produces a
displacement field 𝑢 (𝑥) . We model the full deformation field 𝑥 (𝑥) as the
sum of a dynamic subspace deformation �̃� (𝑥) and a learning-based approx-
imation of the contact displacement field𝑢 (𝑥) . A key insight of our method
is to learn this field as a displacement 𝑟 (𝑧) parameterized in collider space.

2021], hand-and-object interactions [Karunratanakul et al. 2020],
garments [Corona et al. 2021], and personalized dressed humans
[Saito et al. 2021; Tiwari et al. 2021].

Other methods explore more general uses of these learned fields
and, beyond using them to approximate implicit functions, leverage
them to expand surface properties to 3D points. This is inspired by
non-learning works of Kim et al. [2017] and Romero et al. [2020],
who diffuse surface skinning weights inwards to articulate vol-
umetric human bodies represented with tetrahedra. Subsequent
learning-based methods expand surface properties, such as skin-
ning weights, outside the body surface. This strategy has been used
for registering 3D scans to meshes [Bhatnagar et al. 2020], and for
articulating raw scans of dressed humans [Huang et al. 2020]. San-
testeban et al. [2021] go one step further and learn neural fields to
diffuse pose-and-shape surface correctives to R3. Learned fields are
used for projecting garments to a canonical shape, which enables
highly-efficient handling of body-garment collisions. We also use
learned fields to model collisions, but our contact-centric formula-
tion is more general, enables the use of external colliders, and can
be plugged into dynamic subspace deformation frameworks.
The high potential of learning field representations has only re-

cently been identified [Xie et al. 2021], and it has quickly extended
to address many different problems in Computer Vision and Com-
puter Graphics [Chen et al. 2021]. One prominent example is Neural
Radiance Fields (NeRF) [Mildenhall et al. 2020], which learn to syn-
thesize novel views of complex scenes by optimizing a continuous
volumetric scene function using a sparse set of input views. Another
popular example is methods that learn to reconstruct 3D shapes
from images by conditioning an implicit representation on local
features extracted from images [Saito et al. 2019, 2020]. In our work,
we also leverage this high potential, and we apply it to contact
displacement fields.

3 CONTACT-CENTRIC DEFORMATIONS
In this section, we describe how we model contact-driven deforma-
tions. Our modeling approach, i.e., the selection of input and output
representations of contact-driven deformations, is key for designing
an effective learning-based approximation.
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We start the section with a definition of the notation, as well
as a description of our subspace deformable objects. Then, we de-
fine collider-space displacement fields, as a smooth representation
of the deformation fields produced by contact. We continue with
a discussion of continuous vs. discrete representations of the dis-
placement field, and the impact on the design of a learning-based
approximation. To conclude, we propose a sparse approximation of
the displacement field to further improve the learning ability.

3.1 Definitions
We learn contact-centric deformations on a subspace deformable ob-
ject𝑋 . In the absence of contact, a point in (undeformed) object space
𝑥 ∈ 𝑋 is mapped to a deformed position 𝑥 in world space through
a subspace deformation. In our work, we show different subspace
deformation models that combine a dynamic subspace deformation
with quasi-static learning-based corrections (also parameterized in
the same subspace). More specifically, one example we show is the
use of combined point and frame handles, with a smooth deforma-
tion field defined by bounded generalized biharmonic coordinates
(BGBC) [Wang et al. 2015], and further augmented with learning-
based internal corrections [Romero et al. 2021]. Another example
that we show is the use of dynamic articulated skeletons, with lin-
ear blend skinning, and parametric pose-based corrections [Romero
et al. 2017]. We denote as x the subspace kinematic configuration
of the deformable object 𝑋 .
Let us also consider a collider object 𝑍 , and 𝑧 ∈ 𝑍 a point in the

collider space. In our work, we limit ourselves to rigid colliders.
Then, we denote as z the rigid configuration of the collider 𝑍 .

When the deformable object 𝑋 touches a collider 𝑍 , we augment
the subspace deformation field 𝑥 (𝑥) with a contact displacement
field 𝑢 (𝑥), which yields a total deformation field

𝑥 (𝑥) = 𝑥 (𝑥) + 𝑢 (𝑥), (1)

as shown in Figure 2. In our work, we model the subspace defor-
mation 𝑥 (𝑥) using dynamics, and the contact displacement 𝑢 (𝑥) as
a quasi-static deformation. In this way, deformable objects exhibit
rich global dynamics combined with contact-driven detail.

3.2 Collider-Space Displacement
We wish to find a suitable parameterization of the contact displace-
ment field 𝑢 (𝑥) that allows efficient and accurate approximation
with a learning-based architecture. In the limit case of a translation
of a collider along a flat, infinite, homogeneous object, the displace-
ment field induced by contact is constant when expressed in collider
space. In more general cases, the collider may produce a global de-
formation on the deformable object, but far from the collider this
deformation is well captured by the subspace deformation 𝑥 (𝑥);
it is close to the collider where the additional displacement 𝑢 (𝑥)
is relevant. We observe that, when the collider moves, this local
contact-driven displacement varies more smoothly in collider space
than in object space, as shown in Figure 3.
Based on this intuition, we choose to parameterize the contact

displacement in collider space, 𝑟 (𝑧), as depicted in Figure 2. Then,
to evaluate the world-space displacement, we first transform the
subspace deformation 𝑥 (𝑥) to collider space, and then transform
the collider-space displacement again to world space. With T(z)

Fig. 3. The close-ups compare the representation of contact displacements
in object space 𝑥 (left) vs. collider-space 𝑧 (right) for these two examples. As
the collider sweeps through the surface of the deformable object, collider-
space contact displacements are notably smoother, and this drastically
impacts the learning ability of our method.

a rigid transformation based on the collider’s configuration, the
displacement is formally obtained as

𝑢 (𝑥) = T(z) · 𝑟 (𝑧), with 𝑧 = T(z)−1 · 𝑥 (𝑥) . (2)

The contact displacement field depends on the relative configu-
ration between the deformable object and the collider, which we
express as T(z)−1 ·x. In practice, we implement this by transforming
all point and frame handles of the deformable object to the local ref-
erence frame of the collider. Based on this relative configuration, the
contact displacement field can be defined by the following function:

𝑟 (𝑧) ≡ 𝑓
(
𝑧, T(z)−1 · x

)
. (3)

We approximate the function 𝑓 using machine learning. As dis-
cussed above, 𝑓 is in practice a smooth function of the relative
configuration between the collider and the deformable object. Typi-
cal data-driven deformation methods [Pons-Moll et al. 2015; San-
testeban et al. 2019; Song et al. 2020] learn instead object-space
deformations T(x)−1 𝑢 (𝑥). However, we have found that the con-
tact displacement parameterized in object space is far less smooth.
As a direct consequence, the collider-space displacement function
𝑓 can be learned using far fewer training data and with a smaller
network than an object-space displacement function.

3.3 Learning of a Contact Displacement Field
For dynamic simulation of contact mechanics, the deformation field
𝑥 (𝑥), and therefore the contact displacement 𝑢 (𝑥), must be evalu-
ated at two types of points. One type is points on the surface of
the deformable object 𝑋 , for the computation of contact potentials
or contact constraints. The other type is points within 𝑋 , for the
computation of the internal energy (and its derivatives). Due to the
subspace deformation, in practice we use cubature points in the
second case [An et al. 2008].
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Both types of evaluation points are fixed in object space 𝑥 . There-
fore, under an object-space parameterization of contact displace-
ments, it turns out convenient to learn directly the discrete represen-
tation of this function. Furthermore, a common approach in machine
learning is to project such high-dimensional representations to a
compact linear subspace using PCA, and learn only a small number
of PCA coefficients.
However, the evaluation points are not fixed in collider space.

While it might be possible to sample the collider space, and ap-
ply PCA-based learning, the resulting collider-space displacements
should be interpolated to the evaluation points. Instead, motivated
by recent methods that learn continuous fields [Xie et al. 2021], we
opt to learn the contact displacement function 𝑓 directly as a vector
field.
Furthermore, by learning the field 𝑓 using a multilayer percep-

tron (MLP) network, the result is memory-efficient, continuous, and
fully differentiable, which are key properties for successful dynamic
simulation. The displacement 𝑢 (𝑥) is defined only inside the de-
formable object 𝑋 , and this leads to a discontinuity in the sampling
of the collider space 𝑧 when learning the function 𝑓 . However, the
inductive bias of the MLP network smoothly generalizes to unseen
points in the collider space 𝑧, which may be queried at runtime.
The computation of forces and their derivatives requires the eval-
uation of gradients with respect to the collider space. However,
the differentiability of the network provides gradient evaluation by
construction.

3.4 Sparsification of the Learning Function
The major challenge in learning the contact displacement function 𝑓

is the dimensionality of the configuration x of the deformable object.
At first sight, applying our contact-centric deformations to objects
with a rich underlying subspace x (i.e., with many subspace degrees
of freedom) requires a combinatorial explosion of the deformed
configurations that must be fed as training data to learn 𝑓 , and a
function that is more complex and more challenging to learn.
However, as discussed earlier, we can safely assume that con-

tact displacements have local support, as deformations far from
the collider are coarser and well represented by the underlying
subspace deformation. Then, the contact displacement at an object-
space location 𝑥 is only influenced by the configuration x of nearby
handles of the subspace deformation. Note that, even though the
contact displacement function 𝑓 is parameterized in collider space 𝑧,
it implicitly depends on the object space 𝑥 through 𝑧 = T(z)−1 ·𝑥 (𝑥).
Based on the observations above, we approximate the contact

displacement field (3) through a sparse function:

𝑟 (𝑧) ≈ 𝑓
(
𝑧, W(𝑥) · T(z)−1 · x

)
. (4)

where W(𝑥) is a matrix of spatially varying sparsifying weights,
i.e., many of its rows are zero.

We leverage the sparsity of our subspace deformation models to
define the sparsifying weights. Specifically, with U(𝑥) the subspace
basis (e.g., BGBC basis or skinning weights) at a material point 𝑥 , we
build the weights asW(𝑥) = diag(U(𝑥)). Similar ideas of spatially
varying sparse weights have been used in other contexts to obtain
local pose definitions, e.g., weighted pose-space deformation [Kuri-
hara and Miyata 2004] or pose attention weights [Saito et al. 2021]

Fig. 4. Two examples (top, bottom) to depict that contact displacements are
dominated by the configuration of nearby handles/bones of the deformable
object. We leverage this observation designing a sparse approximation of
the contact displacement function. Here, we compare ground-truth displace-
ments (left), learned displacements with sparsifying weights, i.e., Eq. (4)
(middle), and without sparsifying weights, i.e., Eq. (3) (right). With the same
training data, the sparse function achieves superior results, as it succeeds
to disambiguate the subspace state that contributes to the contact displace-
ments.

Figure 4 shows an example comparing the learning accuracy with a
sparse vs. a dense learning function, and we provide a quantitative
analysis in Section 6.

4 DATA AND LEARNING
We pose the problem of designing a learning-based approximation
of the contact displacement function 𝑓 in (4). Solving this problem
requires addressing several tasks, which define the structure of this
section.
First, we address the design and training of a neural network

architecture to compute the contact displacement function 𝑓 . Sec-
ond, we describe our strategy for sampling the arguments of 𝑓 , i.e.,
the collider space, 𝑧, and the relative configuration between object
and collider, T(z)−1 · x. To conclude, we describe the generation of
ground-truth contact displacements 𝑟 (𝑧), which requires solving
contact configurations with and without contact displacements.

4.1 Neural Network Architecture
We use a fully-connected, 2-layer MLP to model the function 𝑓 (4),
with tanh as activation function. The actual size of each layer de-
pends on the specific example; see Section 6 for details. Our research
focus was on the design of the function to be learned, not on the
learning architecture. However, similar to other works that learn
fields, we investigated the use of Fourier features [Benbarka et al.
2022; Sitzmann et al. 2020] to improve the learning ability of the
neural network. Nevertheless, our initial attempts were not success-
ful, as the generalization outside the sampled region became worse.
We leave optimizations of the neural network architecture as future
work.

To learn the parameters of the network, we define a loss function
that combines two terms. One is the L2 error of estimated contact
displacements vs. ground-truth training displacements, summed
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Fig. 5. Our approach significantly improves the generalization capabilities of the state-of-the-art method of Romero et al [2021], and closely matches the
realism of full simulation. Our method is able to learn the complex interaction between the star-shape collider and the deformable jelly using one order of
magnitude less neurons and training data than the original settings used by Romero et al [2021]. In contrast, when trained with such reduced dataset, Romero
et al [2021] are unable to learn deformations due to contact.

over points in the volume of the deformable object 𝑋 . The other
term is the L2 error of differences of estimated contact displacements
vs. differences of ground-truth training displacements, summer over
surface edges of 𝑋 . We observed best preservation of contact detail
when combining both loss terms.

4.2 Sampling the Contact Displacement Function
The generation of training data requires sampling the arguments of
𝑓 , i.e., the collider space, 𝑧, and the relative configuration between
object and collider, T(z)−1 · x. Sampling the collider space is easy.
Motivated by the loss function defined above, we use the nodes {𝑥𝑖 }
of the volumetric mesh of the deformable object, and we transform
them to the collider space through T(𝑧)−1 · 𝑥 (𝑥𝑖 ). Note that the
collider-space samples vary depending on the relative configuration
of the deformable object and the collider.
Sampling the relative configuration between the object and the

collider is more challenging. The dimensionality of this space can
be seen as the number of degrees of freedom of the deformable
object, leaving the collider fixed. However, under this view, the space
would be very difficult to sample, as we care only about colliding
configurations. Alternatively, we look at the space as the Cartesian
product of four subspaces: the configuration X of the deformable
object 𝑋 after removing rigid transformations, the surface of the
deformable object 𝜕𝑋 which defines contact locations, the rotation
SO(3) of the collider, and the penetration depth D ⊂ R between
collider and deformable object. The full space can be represented
as X × 𝜕𝑋 × SO(3) × D. We sample each of these four subspaces
independently. For the penetration depth, we simply use evenly
distributed samples up to a maximum depth, with a bit of random
noise. For the other three subspaces, we generate a large potential
set of samples and we pick a representative subset using a greedy
furthest-point strategy (based on surface geodesic distance for 𝜕𝑋
and norm of axis angle for 𝑆𝑂 (3)).

We pay special attention to sampling the rigid-free configuration
X of the deformable object. We start by executing interactive contact
simulations between the deformable object and the collider, leverag-
ing the speed of the subspace simulation model of the deformable
object. To represent the rigid-free configuration space X, we build
a graph of handle connectivity of the subspace model, and for each

state x of the deformable object we compute relative handle trans-
formations for all edges in the graph. Given a data set of relative
transformations, we normalize separately the entries corresponding
to each edge. Based on this definition of rigid-free configurations,
for furthest-point selection we use the Euclidean distance between
normalized edge transformations.

Thanks to the smoothness of collider-space contact displacements,
together with our decomposition of the relative configuration be-
tween the object and the collider, and the furthest-point sample
selection discussed above, we manage to drastically reduce the num-
ber of samples needed in X, the configuration of the deformable
object. This is arguably the hardest subspace to sample, and a naïve
learning strategy would require exhaustive exploration of the con-
figuration space. Instead, as shown in our results in Section 6, we
sample complex high-dimensional configuration spaces (29 point
handles in the ‘duck’) with fewer than 10 configuration samples, yet
the learned model generalizes well to unseen states.

4.3 Ground-Truth Contact Displacements
Using the procedure described above, we can sample representative
contact configurations of the collider and the deformable object in
an efficient manner. Next, for each of these configurations we must
compute ground-truth contact displacements 𝑟 (𝑧), as the difference
between full-space deformations 𝑥 (𝑥) and subspace deformations
𝑥 (𝑥). However, it is important that the subspace states x of these
deformation fields match.

The subspace deformation is directly given by the interactive gen-
eration of contact configurations. Therefore, we are left to compute
a full-space deformation constrained to the same subspace state.
Even though this task is part of preprocessing, a typical constrained
dynamics solve based on Lagrange multipliers could be very time-
consuming, due to the large number of simulations and the size of
the full-space representation. Instead, we restrict the full-space sim-
ulation to the null-space of the subspace using a projection method.

Given the basisU of the subspace, the matrix P = I−U
(
U𝑇 U

)−1
U𝑇

represents a projection to the null-space of the subspace. To run
the full-space simulation, we use the modified conjugate gradient
method [Ascher and Boxerman 2003], with P as projection matrix.
Note that we do not explicitly compute P, we only compute the
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Fig. 6. The generalization capabilities of our collider-centric method are also evident in this 3D jelly example. Our method is accurate when trained with just 5
poses of the jelly, and increasing the number of poses to 25 provides little gain. In contrast, object-centric learning, as done by Romero et al [2021], fails to
learn contact deformations with 5 poses, and only slightly improves with 25 poses. In Table 2 we provide numerical comparisons. Object-centric learning
suffers the curse of dimensionality, and would require an intractable number of training poses.

Cholesky factorization of U𝑇 U, which is small and fast, and we ap-
ply the various matrix multiplications on each iteration of conjugate
gradient.

5 SIMULATION OF DYNAMIC DEFORMATIONS
Our novel contact-centric learned deformations can be added to a
dynamic subspace simulation model, retaining the fast subspace for-
mulation in the combined simulation. In this section, we formulate
the full dynamics problem, paying special attention to the inclusion
of the learning-based contact displacement function 𝑓 in (4).
We find it convenient to formulate dynamics as an optimiza-

tion problem, using the optimization-formulation of backward Eu-
ler [Gast et al. 2015; Martin et al. 2011]. In this way, we can seam-
lessly use our deformation field definitions (Section 3.1), integrate
quantities on the full-space, and optimize only subspace degrees
of freedom. Given a collider configuration z, and an explicit-Euler
update of full-space positions 𝑥∗ (𝑥), the subspace configuration of
the deformable object is computed as:

x = arg min𝑊inertial +𝑊elastic +𝑊contact (5)

𝑊inertial =

∫
𝑋

𝜌

2ℎ2 ∥𝑥 (𝑥, x, z) − 𝑥∗ (𝑥)∥2 𝑑𝑥,

𝑊elastic =

∫
𝑋

Ψ(𝑥 (𝑥, x, z)) 𝑑𝑥,

𝑊contact =

∫
𝜕𝑋

Φ(T(z)−1 · 𝑥 (𝑥, x, z)) 𝑑𝑥 .

Here, 𝜌 is the mass density of the object, ℎ is the time step, and the
full-space deformation field 𝑥 (𝑥) is defined by combining (1), (2)
and (4):

𝑥 (𝑥, x, z) = 𝑥 (𝑥, x) (6)

+ T(z) · 𝑓
(
𝑧 = T(z)−1 · 𝑥 (𝑥, x), W(𝑥) · T(z)−1 · x

)
.

Table 1. Details about dataset size and runtime performance for the different
objects used to showcase our method. For descriptions about sample types
(e.g., X, 𝜕𝑋 , SO(3), D), see Section 4.2.

Example handles mesh size # samples neurons fps
point/bone tris/tets X 𝜕𝑋 SO(3) D linear full ours

Duck 29/0 37,049 8 64 30 5 500 277 2 25
Floater 24/0 39,450 8 64 30 5 500 211 1 23
Hand 0/16 82,395 1 300 48 5 500 81 1 36
Jelly 2D 8/1 13,720 5 21 32 5 300 548 5 53
Jelly 3D 18/1 60,830 5 64 30 5 500 191 1 19
Worm 0/3 20,213 7 64 32 5 300 428 3 50

In this expression, we show the explicit dependencies of the de-
formable object configuration x, as these are important for the
evaluation of gradients.
In (5) above, Ψ is an elastic energy model. In our case, we have

used the stable Neo-Hookean formulation. Φ is a contact potential
based on a signed distance field precomputed for the collider. It
is zero for negative distances and cubic for positive distances. We
integrate the inertial and elastic terms using cubature [An et al.
2008], with cubature points and weights estimated using a data-
oblivious approach [Tapia et al. 2021]. We integrate the contact
term using all surface mesh points instead.
To solve the optimization (5), we use a Newton-CG solver. To

evaluate gradients of the learning function 𝜕𝑓
𝜕x , we perform back

propagation on the neural network. We do not store the Hessian ex-
plicitly, but instead execute Hessian-vector products. In this regard,
we ignore the Hessian of the learning function, and we implement
gradient-vector products through an auxiliary back propagation
step [Romero et al. 2021]. Despite the small size of the subspace
Hessian, we found more convenient to use Newton-CG than a di-
rect solver, as each Newton step required very few CG iterations in
practice, and hence minimized the number of network evaluations.
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6 RESULTS
In this section we quantitatively and qualitatively evaluate our
method in a variety of objects, scenarios, and interactions. Addition-
ally, we compare it to the state-of-the-art method of Romero et al.
[2021], who also model contact deformations using a data-driven
approach. As baseline, we also show results using a linear subspace
model based on Wang et al. [2015]. All the examples were executed
on an Intel Core i7-7700K 4-core 4.20 GHz PC with 32 GB of RAM.
In Table 1 we provide details of the objects and datasets used

to generate our results, including the mesh discretization of the
full-space simulations.

Jelly 2D. Figure 5 shows frames of a star-shape collider interact-
ing with a 2D jelly, using 4 different methods: full simulation, our
contact-centric approach, the state-of-the-art method of Romero
et al. [2021], and the linear method of Wang et al. [2015]. Note
that we used the original dataset and code publicly available from
Romero et al. [2021] but, to stress the generalization capabilities of
our approach, we used a reduced version of the dataset, consisting
of 16,800 ground truth samples (≈ 15× less than their dataset). To
quantitatively evaluate our results, we also plot the mean per-vertex
error of each method through a test sequence of more than 2,000
frames. Notice, moreover, that our model requires only 300 neurons
while Romero et al. [2021] require 3,000 neurons.

Jelly 3D. Figure 6 shows a similar comparison in 3D, with a pointy
collider interacting with a 3D jelly. We demonstrate that our collider-
centric learning approach is accurate when trained with just 5 con-
figurations of the jelly. The training cost is dominated by the sim-
ulation of all training samples (48, 000 in total, accounting for all
sampled configurations of the collider), which took 37 hours. With
the same training data, object-centric learning [Romero et al. 2021]
fails to produce accurate results. Object-centric learning suffers the
curse of dimensionality, and multiplying the training data to 25
configurations of the jelly (184 hours) barely improved the results.
The errors for all configurations are also compared numerically
in Table 2. The test examples have been generated by projecting
static full-space deformations to the handle-based subspace, and
then adding learning-based contact deformations. Errors are nor-
malized with respect to the difference between full-space and linear
subspace deformation.

These results show that, when using the same amount of training
data, our method generalizes much better than the state-of-the-art
approach by Romero et al. [2021], and it closely reproduces the
realism of a full simulation. Importantly, our method is not only
able to train with less data, but also to model more complex and
highly deformable contact interactions at real-time framerates.

Table 2. Relative error for the different methods and training settings of the
3D Jelly example shown in Figure 6.

# samples X 5 25
Ours 57% 56%

[Romero et al. 2021] 99% 86%

Fig. 7. Qualitative evaluation. We show 4 frames of a sequence where a
collider (semitransparent, for better visualization) interacts with a rubber
duck. Our method (center), closely matches the natural deformations due
to contact that emerge using a full simulation model (left). In contrast, a
linear model [Wang et al. 2015] (right) is unable to deform correctly.

Worm 2D. We have used the worm in Figures 3 and 4 to evaluate
the qualitative and quantitative effect of the sparsification of the

Table 3. Relative error in the Worm example in Figures 3 and 4, with and
without sparsification, for different amounts of training data.

# samples X 1 3 7
sparse 44% 43% 39%

no sparse 96% 76% 47%
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Fig. 8. To depict the good generalization capabilities of our method, here we visualize the closest training sample (bottom) to a wide range of different states of
the deformable duck (top). Frames were randomly picked from a sequence where the collider interacts in real time with the duck. For this particular demo, we
use only 8 samples of the duck state X to train. Since our approach is collider-centric, it generalizes well to unseen states of the deformable duck.

learning function. We have compared the error with respect to a
full-space simulation, with and without sparsification, for differ-
ent amounts of training data (varying the samples of the worm’s
configuration space). The errors reported in Table 3 confirm that
sparsification allows a drastic reduction in the amount of training
data required.

Hand. Figure 1 and the supplementary video showcase an inter-
active sequence where a 3D hand manipulates a rigid cube. The
subspace deformation is built with the MANO model [Romero et al.
2017], and the skeleton is dynamically simulated. The runtime in-
teraction was produced interactively with a LeapMotion device for
hand tracking, and commanding the hand’s skeleton through spring
forces. Notice how the skin surface of the hand naturally deforms
when it touches the cube, even on sharp edges and corners, all in
real time. This example was trained on a single flat pose of the hand.
Despite such extremely simple sampling of the configuration space
of the hand, our contact-centric formulation, together with the spar-
sifying weights, achieve excellent generalization to unseen hand
poses. We demonstrate that the accuracy of the contact deformation
is well-kept across all hand regions, including palm and fingertips,
and for any hand pose.

Ducks. Figure 7 shows frames of a sequence where a collider
closely interacts with a rubber duck, and qualitatively compares
our results to the deformations obtained with a linear subspace
model [Wang et al. 2015] and a full-space simulation. The linear
model, bounded by the limited expressivity of the subspace, is unable
to reproduce the deformations due to contact, producing an unnat-
ural behavior. In contrast, our approach is capable of accurately
modeling deformations due to contact, closely matching the realism
of the full-space simulation, even in situations with strong inter-
actions and heavily deformed states. Please see the supplementary
video for animated results.

In Figure 8, to qualitatively evaluate the generalization capabil-
ities of our approach, we show frames of a sequence where we
interactively manipulate the duck with a collider. For each frame,
we show the closest duck deformation in the training set. Notice

that, even when the closest sample is far from the current state of
the duck, our method is able to accurately reproduce the deforma-
tions due to contact. In the particular case of the Duck scenario, our
contact-centric representation is able to learn accurate contact with
a deformable object using as few as 8 deformed examples. Impor-
tantly, even if we learn deformations without dynamics or friction,
at runtime our method generalizes well to those settings.

Floater. Our method does not explicitly rely on geometric features
of the deformable object or the collider, such as genus or symmetries.
Figure 9 shows a scene with a deformable floater of genus 1 and a
shell collider. The floater falls on top of the shell and it deforms, to
let the shell pass through. With a linear subspace method, the shell
fails to pass through the floater, as the necessary deformations are
not well represented. Our method, on the other hand, represents
them correctly. Please see the motion in the accompanying video.

7 CONCLUSIONS AND FUTURE WORK
In this work, we have presented a contact-centric method to learn
contact-driven deformations. These deformations are added to a
subspace dynamic simulation model, to produce real-time dynamic
simulations of deformable objects with rich contact detail. We have
demonstrated that contact-centric parameterization of the learning
function drastically simplifies its complexity: the space of configura-
tions can be sparsely sampled, and the resulting learning models are
smaller, more efficient, and easier to learn. We further complement
contact-centric modeling with a continuous field representation and
sparsification of the learning function, which contribute to excellent
generalization capabilities.

Our work is not free of limitations, and some of these suggest di-
rections for non-trivial future work. We learn a deformation model
per collider object. This could find applicability in interactive appli-
cations where colliders are known in advance, but it fails to address
applications where multiple colliders interact in complex ways or
where colliders are defined dynamically. We also assume that the
collider is rigid, which again covers a large set of use cases, but it
does not account for deformable-deformable contact.
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Fig. 9. A full-space floater (left) falls on top of a rigid shell and it deforms, to let the shell pass through. This motion is well represented with our method
(middle), while a linear subspace (right) fails to represent the necessary deformations, and the shell gets stuck.

We have introduced our contact-centric modeling approach in
the context of deformable object simulation. However, this approach
might find applicability in other problems of interactionwith objects,
such as joint tracking of hands and objects, or grasp synthesis.
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